We have developed two 474 THz(633 nm)new iodine stabilized He-Ne lasers with compatible system of third and fifth harmonic locking.The frequency stability is 1.0×10-11/ 1s and 3.5×10-12 / 10s with third harm...We have developed two 474 THz(633 nm)new iodine stabilized He-Ne lasers with compatible system of third and fifth harmonic locking.The frequency stability is 1.0×10-11/ 1s and 3.5×10-12 / 10s with third harmonic locking,and corresponding values are 1.3×10-11/1s and 4.0×10-12/ 10s with fifth harmonic locking.We found that the frequency difference between the same component with third and fifth harmonic locking are from 5 kHz to SO kHz.Our experiment and analysis indicate that the center of fifth harmonic signals is closer to the Lorentzian center in iodine absorption component than one of the third harmonic signals,and the reproducibility with fifth harmonic locking is also better than one with third harmonic locking.展开更多
锁频环(frequency-locked loop,FLL)能够快速准确地获取电网的电压和频率信息,被广泛应用于电网同步。当前FLL参数调节在不同性能之间需折中处理,难以获得期望的动态响应。该文提出一种可采用标准化滤波器设计方法的锁频环技术。首先,...锁频环(frequency-locked loop,FLL)能够快速准确地获取电网的电压和频率信息,被广泛应用于电网同步。当前FLL参数调节在不同性能之间需折中处理,难以获得期望的动态响应。该文提出一种可采用标准化滤波器设计方法的锁频环技术。首先,利用小信号模型,设计能够解耦前置滤波器动态的频率观测环,从而使频率观测环内可独立设计滤波器,实现锁频环滤波的同时,灵活设计滤波参数。该方法能在简化计算量的同时提高滤波能力,并能观测频率变化率(rate of change of frequency,RoCoF)。最后,该文给出高阶低通滤波器(high-order low-pass filter,HOLPF)以及移动平均滤波器(moving average filter,MAF)两种设计方案,采用MATLAB/Simulink仿真及实验验证所提灵活动态FLL的有效性及正确性。展开更多
基金The Natural Science Foundation of the Education Department of Henan Province (2009A1100032010A110005)+1 种基金the International Science and Technology Cooperation Project of Henan Provincethe Foundation of Henan University of Technology
基金The project is supported by Naural Science Foundation Committee of China
文摘We have developed two 474 THz(633 nm)new iodine stabilized He-Ne lasers with compatible system of third and fifth harmonic locking.The frequency stability is 1.0×10-11/ 1s and 3.5×10-12 / 10s with third harmonic locking,and corresponding values are 1.3×10-11/1s and 4.0×10-12/ 10s with fifth harmonic locking.We found that the frequency difference between the same component with third and fifth harmonic locking are from 5 kHz to SO kHz.Our experiment and analysis indicate that the center of fifth harmonic signals is closer to the Lorentzian center in iodine absorption component than one of the third harmonic signals,and the reproducibility with fifth harmonic locking is also better than one with third harmonic locking.
文摘锁频环(frequency-locked loop,FLL)能够快速准确地获取电网的电压和频率信息,被广泛应用于电网同步。当前FLL参数调节在不同性能之间需折中处理,难以获得期望的动态响应。该文提出一种可采用标准化滤波器设计方法的锁频环技术。首先,利用小信号模型,设计能够解耦前置滤波器动态的频率观测环,从而使频率观测环内可独立设计滤波器,实现锁频环滤波的同时,灵活设计滤波参数。该方法能在简化计算量的同时提高滤波能力,并能观测频率变化率(rate of change of frequency,RoCoF)。最后,该文给出高阶低通滤波器(high-order low-pass filter,HOLPF)以及移动平均滤波器(moving average filter,MAF)两种设计方案,采用MATLAB/Simulink仿真及实验验证所提灵活动态FLL的有效性及正确性。