Reflective optics with wide field of view has been applied more and more widely in EUVL or space optics, and also plays an important role in promoting scientific and technological research. Among the reflective optics...Reflective optics with wide field of view has been applied more and more widely in EUVL or space optics, and also plays an important role in promoting scientific and technological research. Among the reflective optics, the off-axis reflective optics is the most hopeful solution to the ever-highest demands of these applications. This paper gives the requirements of both the above mentioned applications and the similarities and differences between these two kinds of optical systems. Finally, a design example of off-axis reflective optics with wide field of view is presented and described.展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
针对现有任意反射面速度干涉仪(velocity interferometer system for any reflector,VISAR)装置中依靠人工准直光路的现状,同时为满足未来对远程自动化控制的需求,提出一种新的光路自动准直的方法。该方法通过互补金属氧化物半导体(comp...针对现有任意反射面速度干涉仪(velocity interferometer system for any reflector,VISAR)装置中依靠人工准直光路的现状,同时为满足未来对远程自动化控制的需求,提出一种新的光路自动准直的方法。该方法通过互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)间接测量并以光斑的像素偏差为系统输入,通过系数矩阵转换和离散模糊反馈控制方法快速消除误差。基于Windows的控制和自动化技术(the Windows control and automation technology,TwinCAT)中视觉和运动等模块,将各模块分别运行在不同的实时内核中,消除了视觉与运动控制模块间的通信环节,实现了快速实时的闭环控制。经过冲击波速度测量实验验证,该系统实现了远程“一键式”自动准直,可将准直时间缩短到2 s,准直精度为4.5μm,解决了现有装置人工调节效率不高的问题,提高了系统的精度和稳定性。展开更多
文摘Reflective optics with wide field of view has been applied more and more widely in EUVL or space optics, and also plays an important role in promoting scientific and technological research. Among the reflective optics, the off-axis reflective optics is the most hopeful solution to the ever-highest demands of these applications. This paper gives the requirements of both the above mentioned applications and the similarities and differences between these two kinds of optical systems. Finally, a design example of off-axis reflective optics with wide field of view is presented and described.
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
文摘针对现有任意反射面速度干涉仪(velocity interferometer system for any reflector,VISAR)装置中依靠人工准直光路的现状,同时为满足未来对远程自动化控制的需求,提出一种新的光路自动准直的方法。该方法通过互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)间接测量并以光斑的像素偏差为系统输入,通过系数矩阵转换和离散模糊反馈控制方法快速消除误差。基于Windows的控制和自动化技术(the Windows control and automation technology,TwinCAT)中视觉和运动等模块,将各模块分别运行在不同的实时内核中,消除了视觉与运动控制模块间的通信环节,实现了快速实时的闭环控制。经过冲击波速度测量实验验证,该系统实现了远程“一键式”自动准直,可将准直时间缩短到2 s,准直精度为4.5μm,解决了现有装置人工调节效率不高的问题,提高了系统的精度和稳定性。