Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ...Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.展开更多
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface ...Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.展开更多
基金supported by the Science and Technology Program of Zhejiang Province of China(2005C11001-02).
文摘Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method.
基金supported by the Future Challenge Program through the Agency for Defense Development funded by the Defense Acquisition Program Administration (No.UC200015RD)。
文摘Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces.For monitoring natural environments and conducting security activities within a certain range using a surface vehicle,the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time.It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles.For this purpose,a LiDAR(light detection and ranging)sensor is used as it can simultaneously obtain 3D information for all directions,relatively robustly and accurately,irrespective of the surrounding environmental conditions.Although the GPS(global-positioning-system)error range exists,obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering.In this study,a three-layer convolutional neural network is applied to classify types of surface vehicles.The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes.Hence,we have proposed a descriptor that converts the 3D point cloud data into 2D image data.To use this descriptor effectively,it is necessary to perform a clustering operation that separates the point clouds for each object.We developed voxel-based clustering for the point cloud clustering.Furthermore,using the descriptor,3D point cloud data can be converted into a 2D feature image,and the converted 2D image is provided as an input value to the network.We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator.Furthermore,we explore the feasibility of real-time object classification within this framework.