Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard,...Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012.展开更多
The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic proper...The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.展开更多
A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-co...A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.展开更多
Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the...Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the 2-D conservation laws.Comparisons between the numerical results and the experimental measurements show excellent agreements.The computed results are in good agreement with the numerical solutions obtained by using third order accurate RKDG finite element method.The results show larger gradient at discontinuous points compared with those obtained by second order accurate TVD schemes.It indicates that the presented method is efficient and reliable for solving the axisymmetric jet with external freestream flows,and shows that the method captures shocks well without numerical noise.展开更多
The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three...The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.展开更多
On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability...On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical...The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical simulation. In order to find the most favorable locations of mineralization and to help further mineral exploration, a coupling deforma- tion and fluid flow model has been established to describe the mineralization process. In this model, the simulation re- constructs the strata deformations under fields of compressive stress and thrust structure on the hanging wall of the Zou-Shi fault. Compared with practical information, the simulation results are consistent with the No. 51 exploration section of the western Xiangshan. In addition, on the basis of geological information provided by previous investigators, the model simulates the flow process of fluids under compressive stress fields. The result suggests that many tensional areas are formed, which can help the fluid flowing upward from deeper parts. The fluid is easy to concentrate on the breccia fractured zone between two volcanic layers, especially on the intersection parts with faults, resulting in the for- mation of favourable locations of mineralization. In addition, the model is significant in guiding the exploration of ura- nium deposits in the western Xiangshan and provides clues for further exploration of deposits.展开更多
Based on two-phase flow theory and shallow water flow assumption,a mathematical model is applied to simulate debris flow.The model considers a two-phase mixture of sediments and water fluid.Assuming that the sediments...Based on two-phase flow theory and shallow water flow assumption,a mathematical model is applied to simulate debris flow.The model considers a two-phase mixture of sediments and water fluid.Assuming that the sediments and the water fluid move downstream with the same velocity,the flow of the mixture is described using a two dimensional depth averaged model with a unique 2-D momentum equation and two mass balance e- quations for the mixture and the sediments,respectively.The finite volume method is used f...展开更多
Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reliability of fans in their operational zone is reduced. At times, serious vibration may bring about t...Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reliability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investigated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.展开更多
A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF c...A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.展开更多
Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is o...Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered.展开更多
A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a diel...A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter- pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.展开更多
Based on the Fourier–Chebyshev spectral method, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with direct numerical simulation(DNS...Based on the Fourier–Chebyshev spectral method, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with direct numerical simulation(DNS) methods for different Reynolds numbers. A formula is derived to express the relation between fluctuating velocities and the friction drag coefficient. With the application of electromagnetic force, the in-depth relations among the fluctuating velocities near the wall, Reynolds stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The fluctuating velocities along the streamwise and normal directions are suppressed significantly,while the fluctuating velocity along the spanwise direction is enhanced dramatically due to the spanwise electromagnetic force. However, the values of Reynolds stress depend on the fluctuating velocities along the streamwise and normal directions rather than that along the spanwise direction. Therefore, the significant effect of drag reduction is obtained. Moreover,the maximum drag reduction is weakened due to the decay of control effect for fluctuating velocities as the Reynolds number increases.展开更多
In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volu...In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volume scheme.The base flow of a cylinder afterbody with base bleed is simulated.The simulation results are validated with the experimental data,and the experimental results are well reproduced.On this basis,the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K.The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature.For the circular jet model,the hot gases are concentrated in the vicinity of the base.For the annular jet model,the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer.The latter temperature distribution is better for the increase of base pressure.展开更多
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to ...The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.展开更多
This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space pla...This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex. The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex.展开更多
The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This ...The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.展开更多
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by National Key Research and Development Program of China (No. 2020YFA0710902)National Natural Science Foundation of China (No. 52072319)+1 种基金National Natural Science Foundation of China (Nos. 52072319 and 12172308)State Key Laboratory of Traction Power (2019TPL_T02)。
文摘Aiming at the problem that aerodynamic uplift forces of the pantograph running in the knuckle-downstream and knuckle-upstream conditions are inconsistent,and their magnitudes do not satisfy the corresponding standard, the aerodynamic uplift forces of pantographs with baffles are numerically investigated, and an optimization method to determine the baffle angle is proposed. First, the error between the aerodynamic resistances of the pantograph obtained by numerical simulation and wind tunnel test is less than 5%, which indicates the accuracy of the numerical simulation method. Second, the original pantograph and pantographs equipped with three different baffles are numerically simulated to obtain the aerodynamic forces and moments of the pantograph components.Three different angles for the baffles are-17°, 0° and 17°.Then the multibody simulation is used to calculate the aerodynamic uplift force of the pantograph, and the optimal range for the baffle angle is determined. Results show that the lift force of the baffle increases with the increment of the angle in the knuckle-downstream condition, whereas the lift force of the baffle decreases with the increment of the angle in the knuckle-upstream condition. According to the results of the aerodynamic uplift force, the optimal angle of the baffle is determined to be 4.75° when the running speed is 350 km/h, and pantograph–catenary contact forces are 128.89 N and 129.15 N under the knuckledownstream and knuckle-upstream operating conditions,respectively, which are almost equal and both meet the requirements of the standard EN50367:2012.
基金Supported by the National Natural Science Foundation of China under Grant No 11371069the Young Foundation of Institute of Applied Physics and Computational Mathematics under Grant No ZYSZ1518-13the Science Foundation of China Academy of Engineering Physics under Grant No 2013A0101004
文摘The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.
文摘A finite-rate method is used to simulate the three-dimensional combustion process in a plasma generator with CH4 as the fuel. The simulation was run with RNG k-ε model to simulate turbulence, with eddy-dissipation-concept (EDC) model to simulate the combustion and with discrete ordinates model to simulate radiation. The numerical results show that the flow field characteristics and the parameter distributions are under the condition of rich fuels, and these results provide valuable information when optimizing the plasma generator design and organizing its flow fields.
基金Supported by the National Natural Defense Basic Scientific Research Program of China(A262006-1288)the Key Disciplines Program of Shanghai Municipal Commission of Education(J50501)~~
文摘Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the 2-D conservation laws.Comparisons between the numerical results and the experimental measurements show excellent agreements.The computed results are in good agreement with the numerical solutions obtained by using third order accurate RKDG finite element method.The results show larger gradient at discontinuous points compared with those obtained by second order accurate TVD schemes.It indicates that the presented method is efficient and reliable for solving the axisymmetric jet with external freestream flows,and shows that the method captures shocks well without numerical noise.
基金Financial support for this work was obtained from the National Natural Science Foundation of China(No.51074059)
文摘The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.
基金Project supported by the National High Tech Research and Development Program of China (Grant No 511-0910-1031)the National "10th Five-year" Science and Technique Important Program of China (Grant No 2002BA404A07)
文摘On the basis of the full velocity difference (FVD) model, an improved multiple car-following (MCF) model is proposed by taking into account multiple information inputs from preceding vehicles. The linear stability condition of the model is obtained by using the linear stability theory. Through nonlinear analysis, a modified Korteweg-de Vries equation is constructed and solved. The traffic jam can thus be described by the klnk-antikink soliton solution for the mKdV equation. The improvement of this new model over the previous ones lies in the fact that it not only theoretically retains many strong points of the previous ones, but also performs more realistically than others in the dynamical evolution of congestion. Furthermore, numerical simulation of traffic dynamics shows that the proposed model can avoid the disadvantage of negative velocity that occurs at small sensitivity coefficients λ in the FVD model by adjusting the information on the multiple leading vehicles. No collision occurs and no unrealistic deceleration appears in the improved model.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
基金Projects GPMR0547 supported by the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, and 2002 CB 412601 by the Chinese Ministry of Science and Technology
文摘The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical simulation. In order to find the most favorable locations of mineralization and to help further mineral exploration, a coupling deforma- tion and fluid flow model has been established to describe the mineralization process. In this model, the simulation re- constructs the strata deformations under fields of compressive stress and thrust structure on the hanging wall of the Zou-Shi fault. Compared with practical information, the simulation results are consistent with the No. 51 exploration section of the western Xiangshan. In addition, on the basis of geological information provided by previous investigators, the model simulates the flow process of fluids under compressive stress fields. The result suggests that many tensional areas are formed, which can help the fluid flowing upward from deeper parts. The fluid is easy to concentrate on the breccia fractured zone between two volcanic layers, especially on the intersection parts with faults, resulting in the for- mation of favourable locations of mineralization. In addition, the model is significant in guiding the exploration of ura- nium deposits in the western Xiangshan and provides clues for further exploration of deposits.
基金Supported by the National Excellent Youth Foundation of P,R,China(40025103)
文摘Based on two-phase flow theory and shallow water flow assumption,a mathematical model is applied to simulate debris flow.The model considers a two-phase mixture of sediments and water fluid.Assuming that the sediments and the water fluid move downstream with the same velocity,the flow of the mixture is described using a two dimensional depth averaged model with a unique 2-D momentum equation and two mass balance e- quations for the mixture and the sediments,respectively.The finite volume method is used f...
文摘Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reliability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investigated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.
文摘A three-dimension full-size numerical simulation of the effect of air distribution on turbulent flow and combustion in a tubular heating furnace was carried out. A standard k –ε turbulent model, a simplified PDF combustion model and a discrete ordinate transfer radiation model were used. The hybrid grid combining a structured and a non-structured grid was generated without any simplification of the complicated geometric configuration around the burner. It was found that the multistage combustion could reduce and control the peak value of temperature. At the same time, it was concluded that the amount of primary air had little effect on the global distribution of velocity and temperature in the furnace, but a great effect on that around the burner. It is recommended that 45% - 65% of the total amount of air be taken in in primary air inlets in the furnace. All the results are important to optimize the combustion progress.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.511-0910-1031)
文摘Based on Xue's lattice model, an extended lattice model is proposed by considering the relative current information about next-nearest-neighbour sites ahead. The linear stability condition of the presented model is obtained by employing the linear stability theory. The density wave is investigated analytically with the perturbation method. The results show that the occurrence of traffic jamming transitions can be described by the kink-antikink solution of the modified Korteweg-de Vries (mKdV) equation. The simulation results are in good agreement with the analytical results, showing that the stability of traffic flow can be enhanced when the relative current of next-nearest-neighbour sites ahead is considered.
文摘A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter- pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.
基金Project supported by the National Natural Science Foundation of China(Grant No.11672135)a Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201461)
文摘Based on the Fourier–Chebyshev spectral method, the control of turbulent channel flow by space-dependent electromagnetic force and the mechanism of drag reduction are investigated with direct numerical simulation(DNS) methods for different Reynolds numbers. A formula is derived to express the relation between fluctuating velocities and the friction drag coefficient. With the application of electromagnetic force, the in-depth relations among the fluctuating velocities near the wall, Reynolds stress, and the effect of drag reduction for different Reynolds numbers are discussed. The results indicate that the maximum drag reductions can be obtained with an optimal combination of parameters for each case of different Reynolds numbers. The fluctuating velocities along the streamwise and normal directions are suppressed significantly,while the fluctuating velocity along the spanwise direction is enhanced dramatically due to the spanwise electromagnetic force. However, the values of Reynolds stress depend on the fluctuating velocities along the streamwise and normal directions rather than that along the spanwise direction. Therefore, the significant effect of drag reduction is obtained. Moreover,the maximum drag reduction is weakened due to the decay of control effect for fluctuating velocities as the Reynolds number increases.
基金supported by National Nature Science Foundation of China(Grant No.51176076)
文摘In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volume scheme.The base flow of a cylinder afterbody with base bleed is simulated.The simulation results are validated with the experimental data,and the experimental results are well reproduced.On this basis,the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K.The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature.For the circular jet model,the hot gases are concentrated in the vicinity of the base.For the annular jet model,the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer.The latter temperature distribution is better for the increase of base pressure.
文摘The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start-up,shutdown and other variable speed operations.In this paper,the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods.The terms of accelerations due to variable speeds in the flow governing equations were analyzed in a multiple reference of frame(MRF).A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS-CFX with the standard k-εturbulence model.The entire simulation process was composed of four stages:start-up,normal run,shutdown and post-shutdown.The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre-processor of the software to conduct variable speed simulation.The variations of the flow field in the centrifugal pump were obtained from the transient simulation.The changing laws of flow rate,head and other performance parameters over time were also analyzed and summarized.
基金The project supported by the National Natural Science Foundation of China (Nos. 10075047, 40336052)
文摘This article presents a study we have made of one class of coherent structures of the tripolar vortex. Considering the sheared flow and sheared magnetic field which are common in the thermonuclear plasma and space plasma, we have simulated the dynamics of the tripolar vortex. The results show that the tripolar vortex is largely stable in most cases, but a strongly sheared magnetic field will make the structure less stable, and lead it to decays into single vortices with the large space scale. These results are consistent with findings from former research about the dipolar vortex.
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+1 种基金The major project of universities affiliated to Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project.
文摘The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.