A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H...Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.展开更多
In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic ...In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.展开更多
This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and...This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.展开更多
The frequent change in ice drift direction poses a significant challenge for turret moored ship in ice. Variability in ice drift is mainly caused by the winds and currents. To solve this problem, a new method with num...The frequent change in ice drift direction poses a significant challenge for turret moored ship in ice. Variability in ice drift is mainly caused by the winds and currents. To solve this problem, a new method with numerical simulation based on heading control is applied to reduce the risk of operation of The Arctic Tandem Offloading Terminal(ATOT),which includes an offloading icebreaker(OIB) moored to a submerged turret and a shuttle tanker moored at the stern of the OIB in this paper. An icebreaking tanker, MT Uikku, was modeled in a simulation program. Then the level ice load on the tanker was calculated with different ice thicknesses and drift speeds, after which a heading controller assisted with mooring system is used to simulate the horizontal motion of the tanker under the ice action.展开更多
This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical m...This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.展开更多
Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the ma...Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the marketing competition. To improve the process of thick metal plate rolling and to increase productivity a numerical controlled rolling process is developed, which include the process planning, the mathematical model establishment and the numerical control system development. The process is for the 17 000 kN×3 000 mm movable up roller bending machine. According to the machine configuration non-symmetry rolling process is planed. This makes it possible to integrate all the steps of plate shaping up such as end side bending, several times of semi-shape bending and the last shape finishing. Since the process will perform under the numerical controlled condition whole steps of the process are considered can be worked in the automatic cycle. The mathematic model consists of two sections, the theory model and the experience parameters model. Which takes the original plate parameters such as geometry and mechanics, characters of the machine such as the movement limits, tonnage and so on as input and calculates all the parameters needed in process performing. Meanwhile, the mathematic Model is totally adapted to the control system. The numerical control system development scheme is based on all the works above. Here, a system plan is provided. The functional modules and hardware selection, in detail, are introduced. The system software on top level and the controlling software for controller are developed. And some unit techniques in the system such as timer setting, communication between system and controller, video integration, and the ability of resisting impact force are introduced. The process has been used successfully in production for more than two years. Practice approves that the process is robust.展开更多
A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures an...A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.展开更多
Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays...Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays on the performance of networked control system (NCS) is to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce network traffic in NCS. A method of fault-tolerant control of networked control system is presented, which takes into account system response as well as network traffic. The integrity design for a kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control theory and information scheduling. After detailed theoretical analysis, the paper also provides the simulation results, which further validate the proposed scheme.展开更多
This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are availa...This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.展开更多
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d...The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.展开更多
Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this ...Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.展开更多
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
基金supported by the National Natural Science Foundation of China(61403344)
文摘Both D-stability and finite L2-gain properties are studiedfor a class of uncertain discrete-time systems with timevaryingnetwork-induced delays. By using coordinate transformand delay partition, the D-stability and H∞ performance problemsfor such networked control systems (NCSs) are equivalentlytransferred into the corresponding problems for switching systemswith arbitrary switching. Then, a sufficient condition for the existenceof the robust D-stabilizing controllers is derived in termsof linear matrix inequality (LMI), and the design method is alsopresented for the state feedback controllers which guarantee thatall the closed-loop poles remain inside the specified disk D(α,r)and the desired disturbance attenuation level. Finally, an illustrativeexample is given to demonstrate the effectiveness of the proposedresults.
基金The project was supported by the National Natural Science Faundation of China
文摘In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.
基金supported by the National Natural Science Foundation of China(6110410661473195)+1 种基金the Natural Science Foundation of Liaoning Province(201202156)the Program for Liaoning Excellent Talents in University(LJQ2012100)
文摘This paper investigates a signal difference-based dead- band H∞ control approach for networked control systems (NCSs) with limited resources. The effects of variable network-induced de- lays, sampling intervals and data transmitting deadbands are con- sidered simultaneously and the model of the NCS is presented. A Lyapunov functional is adopted, which makes full use of the network characteristic information including the bounds of net- work delay (BND), the bounds of sampling interval (BSI) and the bounds of transmission deadband (BTD). In the meanwhile, the new H∞ performance analysis and controller design conditions for the NCSs are proposed, which describe the relationship of BND, BSI, BTD and the system's performance. Three examples are used to illustrate the advantages of the proposed methods. The results have shown that the proposed method not only effectively reduces the data traffic, but also guarantees the system asymptotically sta- ble and achieves the prescribed H∞ disturbance attenuation level.
文摘The frequent change in ice drift direction poses a significant challenge for turret moored ship in ice. Variability in ice drift is mainly caused by the winds and currents. To solve this problem, a new method with numerical simulation based on heading control is applied to reduce the risk of operation of The Arctic Tandem Offloading Terminal(ATOT),which includes an offloading icebreaker(OIB) moored to a submerged turret and a shuttle tanker moored at the stern of the OIB in this paper. An icebreaking tanker, MT Uikku, was modeled in a simulation program. Then the level ice load on the tanker was calculated with different ice thicknesses and drift speeds, after which a heading controller assisted with mooring system is used to simulate the horizontal motion of the tanker under the ice action.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z42g), National Natural Science Foundation of China (60574085, 60736026, 60721003), and German Research Foundation (DI 773/10)
基金Supported by National Natural Science Foundation of China (60574085, 60736026, 60721003), the National High Technology Research and Development Program of China (863 Program) (2006AA04Z428), and German Research Foundation (DFG)(DI 773/10)
基金supported by the National Natural Science Foundation of China(6127312660904032)the Natural Science Foundation of Guangdong Province(10251064101000008)
文摘This paper develops the mean-square exponential input-to-state stability(exp-ISS) of the Euler-Maruyama(EM) method for stochastic delay control systems(SDCSs).The definition of mean-square exp-ISS of numerical methods is established.The conditions of the exact and EM method for an SDCS with the property of mean-square exp-ISS are obtained without involving control Lyapunov functions or functional.Under the global Lipschitz coefficients and mean-square continuous measurable inputs,it is proved that the mean-square exp-ISS of an SDCS holds if and only if that of the EM method is preserved for a sufficiently small step size.The proposed results are evaluated by using numerical experiments to show their effectiveness.
文摘Thick metal plate rolling process has become more and more important in building a flat roof of drilling on the bottom at sea. This is because not only the product quality requirement higher and higher but also the marketing competition. To improve the process of thick metal plate rolling and to increase productivity a numerical controlled rolling process is developed, which include the process planning, the mathematical model establishment and the numerical control system development. The process is for the 17 000 kN×3 000 mm movable up roller bending machine. According to the machine configuration non-symmetry rolling process is planed. This makes it possible to integrate all the steps of plate shaping up such as end side bending, several times of semi-shape bending and the last shape finishing. Since the process will perform under the numerical controlled condition whole steps of the process are considered can be worked in the automatic cycle. The mathematic model consists of two sections, the theory model and the experience parameters model. Which takes the original plate parameters such as geometry and mechanics, characters of the machine such as the movement limits, tonnage and so on as input and calculates all the parameters needed in process performing. Meanwhile, the mathematic Model is totally adapted to the control system. The numerical control system development scheme is based on all the works above. Here, a system plan is provided. The functional modules and hardware selection, in detail, are introduced. The system software on top level and the controlling software for controller are developed. And some unit techniques in the system such as timer setting, communication between system and controller, video integration, and the ability of resisting impact force are introduced. The process has been used successfully in production for more than two years. Practice approves that the process is robust.
基金This project was supported by the National Natural Science Foundation of China (60274014)Doctor Foundation of China Education Ministry (20020487006).
文摘A kind of networked control system with network-induced delay and packet dropout, modeled on asynchronous dynamical systems was tested, and the integrity design of the networked control system with sensors failures and actuators failures was analyzed using hybrid systems technique based on the robust fault-tolerant control theory. The parametric expression of controller is given based on the feasible solution of linear matrix inequality. The simulation results are provided on the basis of detailed theoretical analysis, which further demonstrate the validity of the proposed schema.
基金Supported by National Natural Science Foundation of P. R. China (60274014)the Specialized Research Fund for Doctoral Program of Higher Education of P. R. China (20020487006)
文摘Implementing a control system over a communication network induces inevitable time delays that may degrade performance and even cause instability. One of the most effective ways to reduce the negative effect of delays on the performance of networked control system (NCS) is to reduce network traffic. In this paper, adjustable deadbands are explored as a solution to reduce network traffic in NCS. A method of fault-tolerant control of networked control system is presented, which takes into account system response as well as network traffic. The integrity design for a kind of NCS with sensor failures and actuator failures is analyzed based on robust fault-tolerant control theory and information scheduling. After detailed theoretical analysis, the paper also provides the simulation results, which further validate the proposed scheme.
基金supported by the National Natural Science Foundation of China (6057408860874053)
文摘This paper addresses the problem of fault detection(FD) for networked systems with access constraints and packet dropouts.Two independent Markov chains are used to describe the sequences of channels which are available for communication at an instant and the packet dropout process,respectively.Performance indexes H∞ and H_ are introduced to describe the robustness of residual against external disturbances and sensitivity of residual to faults,respectively.By using a mode-dependent fault detection filter(FDF) as residual generator,the addressed FD problem is converted into an auxiliary filter design problem with the above index constraints.A sufficient condition for the existence of the FDF is derived in terms of certain linear matrix inequalities(LMIs).When these LMIs are feasible,the explicit expression of the desired FDF can also be characterized.A numerical example is exploited to show the usefulness of the proposed results.
基金supported by the National Natural Science Foundation of China (60874053 60574088)
文摘The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.
基金National Natural Science Foundation of china(60274014,60574088)
文摘Based on the T-S fuzzy model,this paper presents a new model of non-linear network control system with stochastic transfer delay.Sufficient criterion is proposed to guarantee globally asymptotically stability of this two-levels T-S fuzzy model.Also a T-S fuzzy observer of NCS is designed base on this two-levels T-S fuzzy model.All these results present a new approach for networked control system analysis and design.