In this paper,a sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of orderα(1<α<2)are given.The main results are obtained b...In this paper,a sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of orderα(1<α<2)are given.The main results are obtained by using Krasnoselskii's fixed point theorem in a weighted Banach space.Two examples are given to demonstrate the validity of the proposed results.展开更多
The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference ...The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.展开更多
文摘In this paper,a sufficient conditions to guarantee the existence and stability of solutions for generalized nonlinear fractional differential equations of orderα(1<α<2)are given.The main results are obtained by using Krasnoselskii's fixed point theorem in a weighted Banach space.Two examples are given to demonstrate the validity of the proposed results.
文摘The multi-dimensional system of nonlinear partial differential equations is considered. In two-dimensional case, this system describes process of vein formation in higher plants. Variable directions finite difference scheme is constructed. The stability and convergence of that scheme are studied. Numerical experiments are carried out. The appropriate graphical illustrations and tables are given.