针对比例-积分-微分(Proportional Integral Derivative,PID)控制系统,以恩平20-4组块动力定位(Dynamic Positioning,DP)浮托为依托,采用经验参数法与控制变量法相结合的方法,研究PID控制系统中比例参数K_(p)和微分参数K_(d)对浮托船定...针对比例-积分-微分(Proportional Integral Derivative,PID)控制系统,以恩平20-4组块动力定位(Dynamic Positioning,DP)浮托为依托,采用经验参数法与控制变量法相结合的方法,研究PID控制系统中比例参数K_(p)和微分参数K_(d)对浮托船定位精度(偏移半径)和推进器利用效率的影响。结果表明,随着K p的增大,推进器利用效率增加,甚至出现过盈的现象,偏移半径则是先减小后增大。采用控制变量法对K_(d)取值进行验证,表明随着K_(d)的增大,推进器利用效率增加,偏移半径反而有增大的趋势。研究为DP数值模拟中PID参数的选择提供依据。展开更多
为解决高速公路爆胎车辆出现偏航的问题,借助ve DYNA软件进行了的仿真研究。在确定了爆胎车辆轨迹控制的评价指标后,采用模糊PID(Proportion Integral Differential)控制器,规划了爆胎后车辆的方向盘转角,代替驾驶员对爆胎车辆进行方向...为解决高速公路爆胎车辆出现偏航的问题,借助ve DYNA软件进行了的仿真研究。在确定了爆胎车辆轨迹控制的评价指标后,采用模糊PID(Proportion Integral Differential)控制器,规划了爆胎后车辆的方向盘转角,代替驾驶员对爆胎车辆进行方向控制。该方法结合模糊控制和传统PID控制的优点,针对车辆爆胎的复杂环境,自动整定PID控制参数,适应爆胎车辆的参数变化。仿真结果表明:基于模糊自整定PID的爆胎车辆轨迹控制可在保证车辆稳定行驶的同时控制车辆的行驶轨迹,使其在出现较小偏移后回到原路径,具有较好的适应性。展开更多
文摘针对比例-积分-微分(Proportional Integral Derivative,PID)控制系统,以恩平20-4组块动力定位(Dynamic Positioning,DP)浮托为依托,采用经验参数法与控制变量法相结合的方法,研究PID控制系统中比例参数K_(p)和微分参数K_(d)对浮托船定位精度(偏移半径)和推进器利用效率的影响。结果表明,随着K p的增大,推进器利用效率增加,甚至出现过盈的现象,偏移半径则是先减小后增大。采用控制变量法对K_(d)取值进行验证,表明随着K_(d)的增大,推进器利用效率增加,偏移半径反而有增大的趋势。研究为DP数值模拟中PID参数的选择提供依据。
文摘为解决高速公路爆胎车辆出现偏航的问题,借助ve DYNA软件进行了的仿真研究。在确定了爆胎车辆轨迹控制的评价指标后,采用模糊PID(Proportion Integral Differential)控制器,规划了爆胎后车辆的方向盘转角,代替驾驶员对爆胎车辆进行方向控制。该方法结合模糊控制和传统PID控制的优点,针对车辆爆胎的复杂环境,自动整定PID控制参数,适应爆胎车辆的参数变化。仿真结果表明:基于模糊自整定PID的爆胎车辆轨迹控制可在保证车辆稳定行驶的同时控制车辆的行驶轨迹,使其在出现较小偏移后回到原路径,具有较好的适应性。