期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
2
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 Bayesian networks Genetic algorithm Structure learning Equivalent class
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
3
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 Bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
基于GNN因果推断的结构增强漏洞检测模型
4
作者 司文 赵富成 +2 位作者 李硕 杨帅林 任家东 《燕山大学学报》 北大核心 2025年第4期309-318,共10页
针对现有漏洞检测方法基于单纯的图神经网络模型来提取图结构特征会出现信息标签与图结构直接存在分布外泛化情况从而导致检测效率低的问题,提出了一种基于图神经网络因果推断结合的结构增强漏洞检测模型。该模型将源代码视为一个线性... 针对现有漏洞检测方法基于单纯的图神经网络模型来提取图结构特征会出现信息标签与图结构直接存在分布外泛化情况从而导致检测效率低的问题,提出了一种基于图神经网络因果推断结合的结构增强漏洞检测模型。该模型将源代码视为一个线性化的令牌序列,首先基于词共现关系构建图结构,然后通过图神经网络的剩余连接将图分成因果图和混淆图,分层混淆变量,模拟因果变量与标签之间的因果性关系。最后对因果图和混淆图进行节点嵌入,实现图结构特征的增强。并在CodeXGLUE的真实基准数据集上进行了验证,检测结果在准确率、精确率、F1值上比最优基线方法分别提升了3.15%、3.77%、2.57%,在漏洞检测的性能上取得了显著提升。 展开更多
关键词 深度学习 图神经网络 因果推断 结构增强 漏洞检测
在线阅读 下载PDF
基于卷积神经网络的窄线宽光谱结构参数优化
5
作者 富小鸥 王原丽 +1 位作者 杜庆国 付琴 《江苏大学学报(自然科学版)》 北大核心 2025年第4期438-443,共6页
为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正... 为了解决传统光学结构设计需要大量的建模计算和仿真优化时间的问题,提出了基于卷积神经网络和遗传算法相结合的窄线宽光谱结构参数优化方法.以Y形全介质超表面结构为试验对象,利用时域有限差分方法仿真生成4096组数据集,构建并训练正向预测网络;进一步将训练好的网络与遗传算法相结合,实现超表面结构参数优化.仿真结果表明:训练好的预测网络在测试集上的损失值仅为5.6×10^(-4),且结合优化算法寻优得到的结果比原始数据集中最小半高全宽减小了0.040 nm.新方法相较于传统方法提升了复杂超表面结构的优化效率和效果. 展开更多
关键词 超表面 微纳结构设计 Fano共振 深度学习 卷积神经网络 优化算法
在线阅读 下载PDF
贝叶斯网络结构学习综述
6
作者 孟光磊 丛泽林 +3 位作者 宋彬 李婷珽 王晨光 周铭哲 《北京航空航天大学学报》 北大核心 2025年第9期2829-2849,共21页
贝叶斯网络作为概率论与图论结合的工具,具备高效处理不确定性推理和数据分析的能力,被广泛应用于各领域解决复杂工程问题。此外,还可以结合先验知识和训练样本学习模型,克服了单纯依靠专家知识建立模型的局限性。基于此,回顾了贝叶斯... 贝叶斯网络作为概率论与图论结合的工具,具备高效处理不确定性推理和数据分析的能力,被广泛应用于各领域解决复杂工程问题。此外,还可以结合先验知识和训练样本学习模型,克服了单纯依靠专家知识建立模型的局限性。基于此,回顾了贝叶斯网络的发展历程,分别从基于约束的方法、基于评分搜索的方法、混合约束和评分搜索的方法3个方面对已提出的贝叶斯网络结构学习方法进行分类归纳,并对各类方法研究的现状进行了总结分析。由于现实应用中的数据往往具有非完备性,从缺失数据处理和隐变量学习2个维度阐释了非完备贝叶斯网络结构学习的研究现状。对贝叶斯网络在不同领域中的应用情况进行阐述,并进行总结,讨论了未来贝叶斯网络结构学习方法研究的发展趋势。 展开更多
关键词 机器学习 人工智能算法 贝叶斯网络 结构学习 隐变量
在线阅读 下载PDF
基于并行预测模拟退火的贝叶斯网络结构学习
7
作者 黄赟 陈若言 +3 位作者 马力 蔡一鸣 陆恒杨 方伟 《计算机工程》 北大核心 2025年第10期160-172,共13页
模拟退火(SA)是贝叶斯网络结构学习(BNSL)的有效方法,但其在大规模数据下需要耗费大量搜索时间,且传统的多链SA并行方式为保证并行效率需要减少迭代次数,导致在运行过多线程时搜索不够详尽。此外,SA在信息交换过程中使用择优更新策略,... 模拟退火(SA)是贝叶斯网络结构学习(BNSL)的有效方法,但其在大规模数据下需要耗费大量搜索时间,且传统的多链SA并行方式为保证并行效率需要减少迭代次数,导致在运行过多线程时搜索不够详尽。此外,SA在信息交换过程中使用择优更新策略,易陷入局部最优。针对上述问题,提出一种基于并行预测SA(PPBSA)的BNSL算法,其在并行化过程中确保搜索的详尽性,且在信息交换过程中具有一定的跳出局部最优的能力。PPBSA在退火阶段并行生成当前解之后的数代预测解及其评分,旨在保证搜索深度同时对搜索过程进行充分加速,减少后续多步解生成和评分计算的时间消耗。在线程交换信息时采用禁忌表对陷入局部最优的线程解进行限制搜索,提高解跳出局部最优的能力。在此基础上,基于BDeu评分的可分解性,在SA扰动过程中直接计算变动前后的评分差值,减少大量计算冗余。在一组基准BN上,将所提算法与串行SA及其他算法进行对比实验,结果表明,该算法最高可以达到5倍以上的加速效果,同时能够保证精度。 展开更多
关键词 贝叶斯网络 结构学习 模拟退火 并行算法 启发式算法
在线阅读 下载PDF
语义图增强的多模态推荐算法
8
作者 蔡启健 谭伟 《计算机应用》 北大核心 2025年第2期421-427,共7页
为了挖掘多模态信息潜在的同构语义关系,并学习更好的项目表示,提出一种语义图增强多模态推荐(SGEMR)算法。首先,利用辅助的多模态信息补充历史的用户-项目交互,捕捉用户在不同模态下的偏好;然后,基于度量学习将松散的项目序列重新构建... 为了挖掘多模态信息潜在的同构语义关系,并学习更好的项目表示,提出一种语义图增强多模态推荐(SGEMR)算法。首先,利用辅助的多模态信息补充历史的用户-项目交互,捕捉用户在不同模态下的偏好;然后,基于度量学习将松散的项目序列重新构建为紧密的项目-项目语义图,并设计一个语义层级注意力机制,融合项目的多模态信息;同时,提出一个图重构损失函数,使项目表示保留更多的语义关系,从而提高推荐性能。实验结果表明,在3个真实的数据集上与最优基线算法FREEDOM(FREEzes the item-item graph and DenOises the user-item interaction graph simultaneously for Multimodal recommendation)相比,所提算法的Recall@10分别提升了6.70%、11.30%、5.09%,NDCG@10分别提升了9.09%、12.73%、7.62%,并通过多个消融实验,验证了所提算法的有效性。 展开更多
关键词 推荐算法 图神经网络 多模态融合 注意力机制 图结构学习
在线阅读 下载PDF
基于强化学习的贝叶斯网络模型生成方法研究 被引量:1
9
作者 岑岗 郑泽宇 +2 位作者 岑跃峰 王佳晨 吴思凡 《计算机应用与软件》 北大核心 2024年第12期261-267,313,共8页
传统贝叶斯网络的网络结构需要人为事先确定,用于预测时模型可靠性与准确性较低,因此提出一种基于强化学习的贝叶斯网络模型生成方法。将强化学习用于对最优泛化残差评分的搜寻,通过构建邻接矩阵的方式将贝叶斯网络抽象成有向无环图;对... 传统贝叶斯网络的网络结构需要人为事先确定,用于预测时模型可靠性与准确性较低,因此提出一种基于强化学习的贝叶斯网络模型生成方法。将强化学习用于对最优泛化残差评分的搜寻,通过构建邻接矩阵的方式将贝叶斯网络抽象成有向无环图;对于构建完成的贝叶斯网络,提出一种基于因果方向判断的贝叶斯网络结构优化方法。实验结果表明,该方法优于各类传统的贝叶斯网络结构生成方法。 展开更多
关键词 贝叶斯网络 强化学习 并行集成 因果方向判断 结构生成与优化
在线阅读 下载PDF
近似图引导的演化贝叶斯网络结构学习算法 被引量:1
10
作者 曾奕博 钱鸿 +2 位作者 李丙栋 窦亮 周爱民 《小型微型计算机系统》 CSCD 北大核心 2024年第1期52-61,共10页
贝叶斯网络结构学习是贝叶斯网络推理及应用的基础.搜索高质量的节点序是贝叶斯网络结构学习的一类重要方法.针对在节点序空间中,搜索高质量节点序存在的难以高效、准确评估解的问题,本文提出了一种近似图引导的演化贝叶斯网络结构学习... 贝叶斯网络结构学习是贝叶斯网络推理及应用的基础.搜索高质量的节点序是贝叶斯网络结构学习的一类重要方法.针对在节点序空间中,搜索高质量节点序存在的难以高效、准确评估解的问题,本文提出了一种近似图引导的演化贝叶斯网络结构学习算法.首先,该算法利用互信息构建无向近似图;其次,该算法通过结合节点序和无向近似图构造有向图结构,将其贝叶斯信息准则评分作为节点序的适应度来高效评估节点序,并在演化优化的框架下,使用提出的基于Kendall Tau Distance的交叉算子和基于逆度的变异算子搜索最优节点序;最后,将搜索到的最优节点序输入K2算法得到其对应的贝叶斯网络结构.在4种不同规模网络上的实验结果表明,该算法在收敛时间和准确度之间取得了较好的平衡,其评分相较于对比算法中的次优解分别提升了10.91%、12.28%、53.96%、10.87%. 展开更多
关键词 贝叶斯网络 结构学习 演化算法 近似图 互信息 K2算法
在线阅读 下载PDF
基于改进萤火虫算法的贝叶斯网络结构学习
11
作者 宋楠 邸若海 +3 位作者 王鹏 李晓艳 贺楚超 王储 《科学技术与工程》 北大核心 2024年第26期11314-11322,共9页
贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网... 贝叶斯网络是目前不确定知识表达和推理领域最有效的理论模型之一,利用贝叶斯网络进行分析和推理前首先需要通过结构学习和参数学习获取其网络模型,其中结构学习是参数学习的基础。针对现有萤火虫算法不符合生物学规则以及学习贝叶斯网络结构存在效率低、容易陷入局部最优等问题,设计了一种基于互信息与性别机制的萤火虫算法(firefly algorithm based on mutual information and gender mechanism,MGM-FA)。首先,通过计算节点互信息得到贝叶斯网络骨架图,基于骨架图驱动MGM-FA算法生成初始种群;其次,引入基于性别机制的个性化贝叶斯网络种群更新策略,以保障贝叶斯网络个体的多样性;最后,引入局部优化器和扰动操作符,增强算法的寻优能力。分别在不同规模的标准网络上进行仿真实验,与现有同类型算法相比,该算法精度和效率均有所提升。 展开更多
关键词 贝叶斯网络 结构学习 结构先验 萤火虫算法 MGM-FA算法
在线阅读 下载PDF
基于缩放框架的改进贝叶斯网络结构优化算法
12
作者 祁煜翔 钱龙霞 +1 位作者 王友国 黄海平 《南京邮电大学学报(自然科学版)》 北大核心 2024年第6期128-138,共11页
贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础... 贝叶斯网络在进行概率推理时,寻找最优的网络结构是一个NP-hard问题。为了准确模拟节点之间的因果关系,提出基于缩放框架的改进型网络结构学习算法。首先,利用缩放框架进行因果分析,通过斜率矩阵判断节点之间的因果关系强度,以此为基础构建网络搜索空间,提高了网络结构的初始评分;其次,使用基于评分方法的浣熊优化算法寻找评分最高的网络结构,增强了在贝叶斯网络中的评分搜索能力;最后,对评分最高的结构进行加弧、减弧和转向弧操作,寻找拟合程度最高的最优结构。通过在不同复杂度的标准网络上进行模拟实验,结果表明:所提算法收敛速度更快,能够在较短时间内找到最优结构,且结构学习的评分更高,收敛精度较高。由此说明该算法在准确性和搜寻效率方面更有优势。 展开更多
关键词 贝叶斯网络 结构学习 缩放框架 评分方法 浣熊优化算法
在线阅读 下载PDF
基于MMPC-FPSO贝叶斯网络混合结构学习方法 被引量:2
13
作者 董文佳 方洋旺 +1 位作者 彭维仕 闫晓斌 《空军工程大学学报》 CSCD 北大核心 2024年第2期76-84,共9页
针对贝叶斯网络结构学习的过程中网络结构规模随节点数增加呈指数增长,导致网络结构搜索空间增大,进而导致网络结构学习算法效率低下的问题,提出一种基于最大最小父子集合约束与萤火虫粒子群搜索算法的贝叶斯网络混合结构学习方法。首先... 针对贝叶斯网络结构学习的过程中网络结构规模随节点数增加呈指数增长,导致网络结构搜索空间增大,进而导致网络结构学习算法效率低下的问题,提出一种基于最大最小父子集合约束与萤火虫粒子群搜索算法的贝叶斯网络混合结构学习方法。首先,针对粒子群算法在解决贝叶斯网络结构学习过程中,随机初始化网络结构种群导致算法搜索效率低下,网络结构准确性低的问题提出一种基于改进的最大最小父子集合算法的种群约束方法。其次,针对传统的基于粒子群评分搜索方法速度慢,精度低,易陷入局部最优的问题,提出一种基于萤火虫算子的粒子寻优策略。最后,为了验证所提方法的正确性和优越性,将上述方法用于3种标准网络的结构学习。仿真结果表明:所提算法与传统的基于粒子群的结构学习方法相比,所得的贝叶斯信息准则评分与标准网络评分的差距分别缩小了68.7%、65.5%、34.1%。 展开更多
关键词 结构学习 贝叶斯网络 粒子群算法 MMPC算法
在线阅读 下载PDF
基于全流程并行遗传算法的贝叶斯网络结构学习
14
作者 蔡一鸣 马力 +1 位作者 陆恒杨 方伟 《系统工程与电子技术》 EI CSCD 北大核心 2024年第5期1703-1711,共9页
为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN)。SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分... 为解决海量数据情况下学习贝叶斯网络(Bayesian network,BN)结构的算法性能急剧降低问题,基于Spark框架设计了一种全流程并行遗传算法用于BN结构学习(简称为SparkGA-BN)。SparkGA-BN包含互信息计算并行化、遗传算子并行化和适应度评分并行化3个部分。互信息并行计算可以高效减少搜索空间;在演化前增加对种群信息与选择信息的广播来对全种群执行选择操作。选择与交叉算子共用选择信息以并行执行,从而高效演化并减少数据落盘时间。对约束和评分两阶段产生的中间数据作记忆化存储,提升数据复用率和全局执行效率。实验结果表明,所提算法在执行效率和学习准确率方面均优于对比算法。 展开更多
关键词 贝叶斯网络 结构学习 遗传算法 并行结构学习 SPARK
在线阅读 下载PDF
互信息与爬山法相结合的贝叶斯网络结构学习 被引量:12
15
作者 金焱 胡云安 +1 位作者 张瑾 宋艳波 《计算机应用与软件》 CSCD 北大核心 2012年第9期122-125,共4页
针对爬山法容易陷入局部最优,而随机重复爬山法时间开销过大的问题,将互信息与爬山法相结合,提出了MI&HC贝叶斯网络结构学习算法。首先利用互信息构建初始网络结构,再从该网络结构开始利用爬山法进行贝叶斯网络结构学习。仿真结果表... 针对爬山法容易陷入局部最优,而随机重复爬山法时间开销过大的问题,将互信息与爬山法相结合,提出了MI&HC贝叶斯网络结构学习算法。首先利用互信息构建初始网络结构,再从该网络结构开始利用爬山法进行贝叶斯网络结构学习。仿真结果表明:MI&HC算法,对小型稀疏网络结构的学习效果非常好,对较大型的网络结构的学习也能得到令人满意的结果;该算法不需要节点顺序这一先验信息,却能获得与K2算法相当的学习效果。 展开更多
关键词 互信息 爬山法 贝叶斯网络 结构学习
在线阅读 下载PDF
基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法 被引量:15
16
作者 刘彬 范瑞星 +3 位作者 刘浩然 张力悦 王海羽 张春兰 《通信学报》 EI CSCD 北大核心 2019年第7期151-161,共11页
针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利... 针对目前利用启发式算法学习贝叶斯网络结构易陷入局部最优、寻优效率低的问题,提出一种基于混合樽海鞘-差分进化算法的贝叶斯网络结构学习算法。该算法在种群划分阶段提出自适应的规模因子平衡局部搜索与全局搜索,在子种群更新阶段利用改进的变异算子与交叉算子构建樽海鞘搜索策略与差分搜索策略,更新不同的子种群,在合并子种群阶段利用两点变异算子增加种群多样性。由算法的收敛性分析可知,通过种群的迭代搜索可以找到最佳结构。实验结果表明,与其他算法相比,所提算法收敛精度与寻优效率均有提升。 展开更多
关键词 贝叶斯网络结构学习 樽海鞘算法 差分进化算法 自适应
在线阅读 下载PDF
模块化神经网络的系统结构和学习算法 被引量:8
17
作者 凌卫新 郑启伦 陈琼 《计算机工程与应用》 CSCD 北大核心 2001年第19期13-15,72,共4页
提出了一种基于模块化的神经网络的系统结构和学习算法,它通过用分解判定子模块对输入向量的适当分区域、由合成子网将各区域的结果合成,实现了复杂任务的自动分解判定和模块化训练策略。一般函数逼近和三维墨西哥草帽等2个实现表明,该... 提出了一种基于模块化的神经网络的系统结构和学习算法,它通过用分解判定子模块对输入向量的适当分区域、由合成子网将各区域的结果合成,实现了复杂任务的自动分解判定和模块化训练策略。一般函数逼近和三维墨西哥草帽等2个实现表明,该文提出的结构和算法是可行的、有效的;与非模块化神经网络技术相比,提高了训练速度、改善了网络性能,它具有并行性高、通用性强、对新增样本易于学习、便于硬件实现等特点。 展开更多
关键词 模块化结构 神经网络 学习算法 分解判定
在线阅读 下载PDF
基于蚁群算法的贝叶斯网结构学习 被引量:6
18
作者 冀俊忠 张鸿勋 +1 位作者 胡仁兵 刘椿年 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第6期933-939,954,共8页
针对具有丢失数据的贝叶斯网结构学习问题,提出了一种将数据的完备化与结构的蚁群优化相结合的学习方法.随机初始化未观察到的数据,得到完整的数据集,并利用蚁群算法学习得到初始网络结构;然后进行迭代学习,在每次迭代中根据当前最好的... 针对具有丢失数据的贝叶斯网结构学习问题,提出了一种将数据的完备化与结构的蚁群优化相结合的学习方法.随机初始化未观察到的数据,得到完整的数据集,并利用蚁群算法学习得到初始网络结构;然后进行迭代学习,在每次迭代中根据当前最好的贝叶斯网结构,利用EM估计和随机的采样插入对数据进行完备化,在完备数据下,利用改进的蚁群优化过程使结构不断进化,直到获得全局最优解.实验结果表明,该方法能有效地从不完备数据中学习贝叶斯网结构且与新近的MS-EM、EGA、BN-GS方法相比,具有更高的学习精度. 展开更多
关键词 贝叶斯网 结构学习 丢失数据 蚁群算法 模拟退火
在线阅读 下载PDF
基于Bayesian改进算法的回转窑故障诊断模型研究 被引量:21
19
作者 刘浩然 吕晓贺 +2 位作者 李轩 李世昭 史永红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1554-1561,共8页
贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结... 贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结合,提出了一种新的贝叶斯网络结构学习改进算法。通过与经典的爬山法和K2算法进行比较,结果表明该改进算法不仅能够得到较高准确率的模型,而且能够提高模型建立的效率。最后基于该改进算法,结合冀东水泥集团的水泥回转窑现场运行数据,建立了水泥回转窑故障诊断模型,实现了精确快速的故障诊断。 展开更多
关键词 最大支撑树 改进算法 贝叶斯网络结构学习 水泥回转窑 故障诊断模型
在线阅读 下载PDF
基于小生境遗传算法的贝叶斯网络结构学习算法研究 被引量:5
20
作者 黄浩 宋瀚涛 陆玉昌 《计算机应用研究》 CSCD 北大核心 2007年第4期100-103,共4页
在数据缺失的情况下讨论一种贝叶斯网络的结构学习算法。该算法结合了小生境遗传算法和EM算法,最后通过试验说明了该算法的有效性。
关键词 贝叶斯网络 结构学习 小生境遗传算法 期望最大化算法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部