针对复杂工业过程中的非线性、非高斯特性以及多工况问题,提出了一种基于局部模型的在线统计监测新方法.首先利用局部最小二乘支持向量机回归(Least square support vector regression,LSSVR)模型对过程输出进行预测,与真实的输出相比...针对复杂工业过程中的非线性、非高斯特性以及多工况问题,提出了一种基于局部模型的在线统计监测新方法.首先利用局部最小二乘支持向量机回归(Least square support vector regression,LSSVR)模型对过程输出进行预测,与真实的输出相比较构成残差序列.然后利用ICA-PCA两步特征提取策略,完整地提取残差的高斯和非高斯信息,最后用三个统计量(I^2、T^2和SPE)对过程进行监测,建立了一种具有非线性、非高斯特性的多工况过程在线监测算法.通过对TE(Tennessee Eastman)过程的仿真研究,验证提出的方法是可行、有效的,并显示出了一定的故障检测能力.展开更多
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA040308), National Natural Science Foundation of China (60736021), and the National Creative Research Groups Science Foundation of China (60721062)