This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknow...This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.展开更多
A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximate...A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.展开更多
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ...A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.展开更多
针对四旋翼无人机轨迹跟踪控制器跟踪性能不稳定的问题,提出一种基于非线性模型预测控制(nolinear model predict control,NMPC)的轨迹跟踪算法。首先,建立四旋翼无人机的动力学模型,定义四旋翼无人机的位置和姿态为状态量,螺旋桨转速...针对四旋翼无人机轨迹跟踪控制器跟踪性能不稳定的问题,提出一种基于非线性模型预测控制(nolinear model predict control,NMPC)的轨迹跟踪算法。首先,建立四旋翼无人机的动力学模型,定义四旋翼无人机的位置和姿态为状态量,螺旋桨转速为控制输入量,建立非线性状态空间方程作为控制算法的预测模型。其次,定义最优化函数和四旋翼无人机控制约束,将轨迹跟踪控制问题转换为非线性最优化求解问题。最后,通过多重打靶法求解得到的最优控制量作为四旋翼无人机的输入信号。为验证NMPC算法的跟踪性能,在Matlab中搭建仿真平台进行对比实验,结果表明,与PID和串级模型预测控制(model predict control,MPC)及改进MPC方法相比,NMPC算法能够在满足约束的情况下完成轨迹跟踪任务,误差小、精度高,并具有抗干扰能力。展开更多
针对欠驱动水面船舶轨迹跟踪控制问题,根据模型预测控制(Model Predictive Control, MPC)原理,提出一种基于参数化模型的非线性模型预测控制(Parameterized Model-Nonlinear Model Predictive Control, PM-NMPC)方法。采用最小二乘法对...针对欠驱动水面船舶轨迹跟踪控制问题,根据模型预测控制(Model Predictive Control, MPC)原理,提出一种基于参数化模型的非线性模型预测控制(Parameterized Model-Nonlinear Model Predictive Control, PM-NMPC)方法。采用最小二乘法对船舶的参数化模型进行辩识,设计PM-NMPC控制器。对环境干扰下的某集装箱船艏向角控制和轨迹跟踪进行试验,验证控制算法的有效性,并将该控制器与比例积分微分控制器(Proportional plus Integral plus Derivative cotroller, PID cotroller)控制器进行对比。仿真结果表明,PM-NMPC控制器轨迹跟踪效果更好,对未知干扰具有更强的稳健性。展开更多
文摘This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.
基金the Natural Science Foundation of China (No.50636010)
文摘A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.
文摘A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
文摘针对欠驱动水面船舶轨迹跟踪控制问题,根据模型预测控制(Model Predictive Control, MPC)原理,提出一种基于参数化模型的非线性模型预测控制(Parameterized Model-Nonlinear Model Predictive Control, PM-NMPC)方法。采用最小二乘法对船舶的参数化模型进行辩识,设计PM-NMPC控制器。对环境干扰下的某集装箱船艏向角控制和轨迹跟踪进行试验,验证控制算法的有效性,并将该控制器与比例积分微分控制器(Proportional plus Integral plus Derivative cotroller, PID cotroller)控制器进行对比。仿真结果表明,PM-NMPC控制器轨迹跟踪效果更好,对未知干扰具有更强的稳健性。