The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentia...The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.展开更多
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv...A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.展开更多
Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in desi...Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter.展开更多
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d...The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.展开更多
UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended ...UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended Kalman filtering) . As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF. The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.展开更多
The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems ...The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters,which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.展开更多
A marginalized particle filtering (MPF) approach is proposed for target tracking under the background of passive measurement. Essentially, the MPF is a combination of particle filtering technique and Kalman filter. ...A marginalized particle filtering (MPF) approach is proposed for target tracking under the background of passive measurement. Essentially, the MPF is a combination of particle filtering technique and Kalman filter. By making full use of marginalization, the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter, and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter. Simulation studies are performed on an illustrative example, and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation. Real data test results also validate the effectiveness of the presented method.展开更多
Phased array radar’s measurements include two direction cosine and range measurements,which can be obtained in the direction cosine coordinates.State equation of the target is nonlinear with the measurements and in o...Phased array radar’s measurements include two direction cosine and range measurements,which can be obtained in the direction cosine coordinates.State equation of the target is nonlinear with the measurements and in order to solve the nonlinear problem,debiased conversion measurements based target tracking with direction cosine and range measurements in direction cosine coordinates named DCMKFPreDcos is proposed first in this paper,where the predicted information is introduced to calculate the converted measurement errors’statistical characteristics to eliminate the correlation between measurement noise and the converted measurement errors covariance.When range rate information can be obtained further,based on the above DCMKF-PreDcos’filtering result,the sequential filtering is adopted to process the additional range rate measurement and the DCMKF-PreDcos algorithm with extra range rate information is given.The predicted information is also introduced to calculate the involved statistical characteristics of converted measurements.The effectiveness of the proposed algorithms is shown in simulation results.展开更多
The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the all...The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.
文摘A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one.
基金supported by the National Natural Science Foundation of China(61271296)
文摘Particle filters have been widely used in nonlinear/non- Gaussian Bayesian state estimation problems. However, efficient distribution of the limited number of particles (n state space remains a critical issue in designing a particle filter. A simplified unscented particle filter (SUPF) is presented, where particles are drawn partly from the transition prior density (TPD) and partly from the Gaussian approximate posterior density (GAPD) obtained by a unscented Kalman filter. The ratio of the number of particles drawn from TPD to the number of particles drawn from GAPD is adaptively determined by the maximum likelihood ratio (MLR). The MLR is defined to measure how well the particles, drawn from the TPD, match the likelihood model. It is shown that the particle set generated by this sampling strategy is more close to the significant region in state space and tends to yield more accurate results. Simulation results demonstrate that the versatility and es- timation accuracy of SUPF exceed that of standard particle filter, extended Kalman particle filter and unscented particle filter.
基金Project(4144081)supported by Beijing Natural Science Foundation,ChinaProjects(61403021,U1334211,61490705)supported by the National Natural Science Foundation of China+1 种基金Project(2015RC015)supported by the Fundamental Research Funds for Central Universities,ChinaProject supported by the Foundation of Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control,China
文摘The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.
基金This project was supported by the Innoviation Foundation of the Space Science and Technology Group.
文摘UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF ( extended Kalman filtering) . As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF. The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.
基金supported by the National Natural Science Foundation of China(61703228)
文摘The paper deals with the state estimation of the widely used scaled unscented Kalman filter(UKF). In particular, the stress is laid on the scaling parameters selection principle for the scaled UKF. Several problems caused by recommended constant scaling parameters are highlighted. On the basis of the analyses, an effective scaled UKF is proposed with self-adaptive scaling parameters,which is easy to understand and implement in engineering. Two typical strong nonlinear examples are given and their simulation results show the effectiveness of the proposed principle and algorithm.
文摘A marginalized particle filtering (MPF) approach is proposed for target tracking under the background of passive measurement. Essentially, the MPF is a combination of particle filtering technique and Kalman filter. By making full use of marginalization, the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter, and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter. Simulation studies are performed on an illustrative example, and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation. Real data test results also validate the effectiveness of the presented method.
基金supported by the National Natural Science Foundation of China(61771095,62031007)。
文摘Phased array radar’s measurements include two direction cosine and range measurements,which can be obtained in the direction cosine coordinates.State equation of the target is nonlinear with the measurements and in order to solve the nonlinear problem,debiased conversion measurements based target tracking with direction cosine and range measurements in direction cosine coordinates named DCMKFPreDcos is proposed first in this paper,where the predicted information is introduced to calculate the converted measurement errors’statistical characteristics to eliminate the correlation between measurement noise and the converted measurement errors covariance.When range rate information can be obtained further,based on the above DCMKF-PreDcos’filtering result,the sequential filtering is adopted to process the additional range rate measurement and the DCMKF-PreDcos algorithm with extra range rate information is given.The predicted information is also introduced to calculate the involved statistical characteristics of converted measurements.The effectiveness of the proposed algorithms is shown in simulation results.
基金Project(050403)supported by Pre-research Project in the Manned Space Filed of China。
文摘The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.