期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Quantifying the thermal damping effect in underground vertical shafts using the nonlinear autoregressive with external input(NARX) algorithm 被引量:9
1
作者 Pedram Roghanchi Karoly C.Kocsis 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期255-262,共8页
As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the... As air descends the intake shaft, its infrastructure, lining and the strata will emit heat during the night when the intake air is cool and, on the contrary, will absorb heat during the day when the temperature of the air becomes greater than that of the strata. This cyclic phenomenon, also known as the "thermal damping effect" will continue throughout the year reducing the effect of surface air temperature variation. The objective of this paper is to quantify the thermal damping effect in vertical underground airways. A nonlinear autoregressive time series with external input(NARX) algorithm was used as a novel method to predict the dry-bulb temperature(Td) at the bottom of intake shafts as a function of surface air temperature. Analyses demonstrated that the artificial neural network(ANN) model could accurately predict the temperature at the bottom of a shaft. Furthermore, an attempt was made to quantify typical "damping coefficient" for both production and ventilation shafts through simple linear regression models. Comparisons between the collected climatic data and the regression-based predictions show that a simple linear regression model provides an acceptable accuracy when predicting the Tdat the bottom of intake shafts. 展开更多
关键词 UNDERGROUND mining Vertical openings THERMAL damping effect Artificial neural network nonlinear autoregressive with EXTERNAL input(NARX)
在线阅读 下载PDF
Terminal Angular Constraint Integrated Guidance and Control for Flexible Hypersonic Vehicle with Dead-Zone Input Nonlinearity
2
作者 Hewei Zhao 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期489-503,共15页
This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearit... This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design. 展开更多
关键词 hypersonic vehicle terminal angular constraint dead-zone input nonlinearity full tuned radial basis function(RBF)neural network(NN) integrated guidance and control
在线阅读 下载PDF
Random dynamic analysis of vertical train–bridge systems under small probability by surrogate model and subset simulation with splitting 被引量:11
3
作者 Huoyue Xiang Ping Tang +1 位作者 Yuan Zhang Yongle Li 《Railway Engineering Science》 2020年第3期305-315,共11页
The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge... The response of the train–bridge system has an obvious random behavior.A high traffic density and a long maintenance period of a track will result in a substantial increase in the number of trains running on a bridge,and there is small likelihood that the maximum responses of the train and bridge happen in the total maintenance period of the track.Firstly,the coupling model of train–bridge systems is reviewed.Then,an ensemble method is presented,which can estimate the small probabilities of a dynamic system with stochastic excitations.The main idea of the ensemble method is to use the NARX(nonlinear autoregressive with exogenous input)model to replace the physical model and apply subset simulation with splitting to obtain the extreme distribution.Finally,the efficiency of the suggested method is compared with the direct Monte Carlo simulation method,and the probability exceedance of train responses under the vertical track irregularity is discussed.The results show that when the small probability of train responses under vertical track irregularity is estimated,the ensemble method can reduce both the calculation time of a single sample and the required number of samples. 展开更多
关键词 Train–bridge system Ensemble method Surrogate model nonlinear autoregressive with exogenous input Subset simulation with splitting Small probability
在线阅读 下载PDF
基于PSO-NARX网络的司机驾驶行为分析方法 被引量:1
4
作者 王心仪 程剑锋 易海旺 《铁道学报》 EI CAS CSCD 北大核心 2024年第9期94-101,共8页
舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的... 舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的列车司机驾驶行为分析方法。该方法构建了具有时序特征的NARX网络模型,并选取多项影响司机决策的参数作为输入,利用粒子群优化算法(PSO)确定网络的权重和阈值,对下一时刻列车运行情况进行预测。仿真结果表明:本文提出的PSO-NARX网络分析模型的预测效果优于前馈型神经网络(BP)、PSO-BP、NARX,相比于BP算法,迭代步数降低了373步,误差降低了8382%,相关系数达到了90117%。通过此预测,可以优化列车的自动驾驶设备性能指标,保障列车准时的同时,提高了乘客乘坐的舒适性。 展开更多
关键词 高速铁路 非线性自回归神经网络 粒子群优化算法 驾驶行为 辨识
在线阅读 下载PDF
输入饱和约束下自适应RBF神经网络非线性反馈船舶航向控制
5
作者 苏文学 孟祥飞 张强 《上海海事大学学报》 北大核心 2024年第2期14-19,共6页
针对输入饱和约束下外界扰动和模型不确定情况下的船舶航向跟踪控制问题,提出一种自适应径向基函数(radial basis function,RBF)神经网络非线性反馈航向跟踪控制方法。利用自适应RBF神经网络对外界扰动和模型不确定项进行估计,并利用最... 针对输入饱和约束下外界扰动和模型不确定情况下的船舶航向跟踪控制问题,提出一种自适应径向基函数(radial basis function,RBF)神经网络非线性反馈航向跟踪控制方法。利用自适应RBF神经网络对外界扰动和模型不确定项进行估计,并利用最小学习参数法减少计算量;将一个具有误差增益反相关特征的非线性函数嵌入控制律中,设计一种非线性反馈控制方法;利用李雅普诺夫理论证明所有信号在考虑外界扰动和模型不确定的船舶航向跟踪控制系统中都是一致有界的。通过仿真和比较,验证了所设计控制方法的有效性。所做研究可为输入饱和约束下船舶航向跟踪控制提供参考,具有工程实际意义。 展开更多
关键词 船舶航向跟踪 径向基函数(RBF)神经网络 非线性反馈控制 输入饱和
在线阅读 下载PDF
基于数据分解与NARX优化的滇池COD_(Mn)时间序列预测
6
作者 王永顺 崔东文 《人民珠江》 2024年第7期92-100,共9页
高锰酸盐指数(COD_(Mn))是衡量水体受还原性物质污染程度的重要指标之一。为提高COD_(Mn)预测精度,结合小波包变换(WPT)、成功历史智能优化(SHIO)算法和非线性自回归神经网络(NARX),提出WPT-SHIO-NARX COD_(Mn)时间序列预测模型。首先利... 高锰酸盐指数(COD_(Mn))是衡量水体受还原性物质污染程度的重要指标之一。为提高COD_(Mn)预测精度,结合小波包变换(WPT)、成功历史智能优化(SHIO)算法和非线性自回归神经网络(NARX),提出WPT-SHIO-NARX COD_(Mn)时间序列预测模型。首先利用WPT将COD_(Mn)时间序列分解为1个周期项分量和3个波动项分量;然后简要介绍SHIO原理,利用SHIO对NARX输入延时阶数等超参数进行调优;最后基于调优获得的超参数建立WPT-SHIO-NARX模型对COD_(Mn)周期项及波动项分量进行预测,重构后得到最终预测结果,并构建WPT-粒子群优化算法(PSO)-NARX、WPT-遗传算法(GA)-NARX、WPT-NARX、SHIO-NARX、WPT-SHIO-极限学习机(ELM)、WPT-SHIO-BP神经网络模型作对比分析,并以滇池西苑隧道断面、观音山断面2004—2015年逐周COD_(Mn)监测数据对各模型进行验证。结果表明:WPT-SHIO-NARX模型具有较好的预测性能,西苑隧道、观音山在未来1周、未来2周(半月)COD_(Mn)预测的平均绝对百分比误差MAPE分别为0.108%和0.045%、0.151%和0.165%,对未来4周(1月)COD_(Mn)预测的MAPE分别为1.383%、0.809%,对未来8周(2月)COD_(Mn)预测的MAPE分别为6.180%、4.573%,预测精度优于其他对比模型;WPT能将COD_(Mn)时序数据分解为更具规律的子序列分量,提高模型预测精度;SHIO能有效优化NARX超参数,显著提升NARX性能,优化效果优于GA、PSO;NARX网络具有延时和反馈机制,更适用于时间序列预测,其预测效果优于ELM、BP网络。 展开更多
关键词 COD_(Mn)预测 非线性自回归神经网络 成功历史智能优化算法 小波包变换 滇池
在线阅读 下载PDF
ANN非线性时间序列预测模型输入延时τ的确定 被引量:5
7
作者 张胜 刘红星 +2 位作者 高敦堂 沈振宇 业苏宁 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第6期905-908,共4页
用神经网络 (ANN)建立非线性时间序列预测模型时 ,ANN输入数据延时间隔τ的选取是必须考虑的一个方面 .目前关于延时间隔τ选取的流行做法是 :将τ确定为相空间重构时的最佳延时τs.本文提出了与此不同的观点 ,即神经网络输入数据延时... 用神经网络 (ANN)建立非线性时间序列预测模型时 ,ANN输入数据延时间隔τ的选取是必须考虑的一个方面 .目前关于延时间隔τ选取的流行做法是 :将τ确定为相空间重构时的最佳延时τs.本文提出了与此不同的观点 ,即神经网络输入数据延时间隔τ的选取与τs 无直接关系 .综合考虑其他一些因素 ,认为ANN输入数据延时间隔τ取为 1是最为合理的 . 展开更多
关键词 ANN 模型 非线性时间序列 混沌 相空间重构 预测 神经网络 输入延时
在线阅读 下载PDF
基于NARX神经网络的轮重减载率预测方法 被引量:2
8
作者 潘丽莎 程晓卿 +2 位作者 秦勇 陈浩 邢宗义 《城市轨道交通研究》 北大核心 2012年第8期59-62,共4页
介绍了一种基于神经网络的轮重减载率预测方法。以左轨轨向不平顺、右轨轨向不平顺、左轨高低不平顺、右轨高低不平顺为输入,以轮重减载率为输出,采用贝叶斯正则化算法构建了NARX(外部输入非线性自回归神经网络)。仿真试验结果及与BP神... 介绍了一种基于神经网络的轮重减载率预测方法。以左轨轨向不平顺、右轨轨向不平顺、左轨高低不平顺、右轨高低不平顺为输入,以轮重减载率为输出,采用贝叶斯正则化算法构建了NARX(外部输入非线性自回归神经网络)。仿真试验结果及与BP神经网络的比较表明,采用NARX实现轮重减载率预测是可行而有效的。NARX比BP神经网络更适用于减载率预测。 展开更多
关键词 车辆 轮重减载率 神经网络 NARX
在线阅读 下载PDF
基于MI-Granger-NARX融合模型的铁路网规模测算方法 被引量:3
9
作者 钱名军 李引珍 +1 位作者 何瑞春 曾海军 《铁道学报》 EI CAS CSCD 北大核心 2021年第1期28-38,共11页
铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量... 铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量等12项影响铁路网规模的指标进行互信息计算。接着,运用Granger因果检验对初选指标进一步筛选,获得7项最具解释力的指标。然后,利用NARX良好的学习记忆与延迟反馈功能构建测算模型,以筛选所得7项指标作为自变量输入、铁路网里程序列作为因变量自回归输入测算铁路网里程。最后,将本模型与传统BP、NAR和单一NARX等神经网络模型的测算结果进行验证、对比。结果表明本模型解释能力更强、泛化能力更好和结果精度更高。 展开更多
关键词 铁路网规模 互信息 GRANGER因果关系检验 NARX 多元时间序列预测
在线阅读 下载PDF
一类非线性输入时滞系统自适应控制——无源化方法 被引量:1
10
作者 于占东 王显峰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2011年第2期188-193,共6页
针对一类含输入时滞的不确定严反馈非线性系统,设计了有记忆时滞依赖型γ-无源自适应控制器.首先,在局部线性化的基础上设计了有记忆时滞依赖型γ-无源控制器.针对严反馈非线性系统各个子系统中的非线性,利用Back-stepping方法将局部γ... 针对一类含输入时滞的不确定严反馈非线性系统,设计了有记忆时滞依赖型γ-无源自适应控制器.首先,在局部线性化的基础上设计了有记忆时滞依赖型γ-无源控制器.针对严反馈非线性系统各个子系统中的非线性,利用Back-stepping方法将局部γ-无源控制律进行分解,得到线性的中间虚拟控制律,在此基础上,利用神经网络补偿各子系统的非线性部分,将上述过程整合即得到系统的最终控制律.控制器的特点是针对系统中的输入时滞,反馈控制律采用有记忆的时滞依赖型控制策略,即系统的反馈控制律不仅与当前的系统状态有关,还与系统的时滞过程中的控制作用有关.这种控制方法比无记忆时滞独立型控制保守性更小.稳定性分析中,证明了闭环系统是一致终态有界稳定的. 展开更多
关键词 严反馈非线性系统 输入时滞 γ-无源 BACKSTEPPING方法 神经网络
在线阅读 下载PDF
可重构功放的新颖NARX神经网络逆向建模研究 被引量:1
11
作者 南敬昌 臧净 +1 位作者 高明明 胡婷婷 《微波学报》 CSCD 北大核心 2019年第5期51-56,共6页
针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的... 针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的前馈部分完成数据分类,解决设计中的多解问题。然后应用于可以覆盖多个频段的可重构功率放大器中,实验表明,该方法在精度方面分别优于直接逆向建模方法和自适应η逆向建模方法99.86%和81.32%,计算速度方面优于直接逆向建模方法31.72%,可以降低射频微波可重构功率放大器的设计复杂度、缩短其设计时间。 展开更多
关键词 带外部输入的非线性自回归(NARX)神经网络 逆向建模 DAFNN神经元模型 支持向量机 可重构功率放大器
在线阅读 下载PDF
淮安市水源水质与胃肠道疾病发病关系的探讨分析
12
作者 高健 秦振声 +1 位作者 徐子为 尚进 《食品安全质量检测学报》 CAS 2014年第4期1246-1249,共4页
目的探讨水源水质与胃肠道疾病之间的关系,以及胃肠道疾病的发病规律。方法选择淮安市2006年1月至2013年12月间水源水质指标及胃肠道患病例数,并进行相关性分析,然后进行具有输出时延反馈的非线性自回归(NARX)神经网络模型的构建、训练... 目的探讨水源水质与胃肠道疾病之间的关系,以及胃肠道疾病的发病规律。方法选择淮安市2006年1月至2013年12月间水源水质指标及胃肠道患病例数,并进行相关性分析,然后进行具有输出时延反馈的非线性自回归(NARX)神经网络模型的构建、训练及模拟。结果水源水质的石油类、挥发酚、总砷、总汞、6价铬、氟化物及粪大肠菌群等指标与发病人数有显著的相关性。经过训练后NARX神经网络的可决系数为0.716,拟合效果比较理想。结论水源水质与胃肠道疾病之间存在一定的相关性,基于NARX神经网络对水源水质与胃肠道疾病进行拟合是可行的。 展开更多
关键词 胃肠道疾病 NARX神经网络 水源水质 拟合
在线阅读 下载PDF
基于神经网络模型偶的投入产出建模(英文)
13
作者 蔡广基 张丽清 +1 位作者 邹生 刘永清 《华南理工大学学报(自然科学版)》 EI CAS CSCD 1996年第5期-,共7页
基于投入产出中使用和投入两个方向的非线性关系,本文利用神经网络技术建立了一种新的投入产出模型,并讨论了该模型在投入系数综合预测中的应用。文中报导了神经网络模型偶的修正了的反传训练公式。最后。
关键词 投入产出分析 前馈神经网络 非线性映射 综合预测
在线阅读 下载PDF
投入产出的线性假设分析
14
作者 蔡广基 张丽清 刘永清 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 1998年第10期84-88,共5页
首先导出了投入产出分析中,产出水平与需求水平之间、产出水平与投入水平之间的两对不兼容的线性关系式,并分析了产生不兼容性的根源和全局线性假设的局限性,最后提出了投入产出非线性建模的一种可能途径─—神经网络建模方法.
关键词 投入产出分析 非线性建模 神经网络 线性假设
在线阅读 下载PDF
具有输入时滞的随机非线性系统的自适应神经网络控制
15
作者 余昭旭 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期210-215,共6页
考虑一类具有输入时滞的随机非线性系统的自适应神经网络控制问题。通过定义含输入积分项的设计变量,将输入时滞系统转变为非时滞系统。结合神经网络控制、积分中值定理与Decoupled Backstepping技巧,针对该类系统提出一套自适应控制策... 考虑一类具有输入时滞的随机非线性系统的自适应神经网络控制问题。通过定义含输入积分项的设计变量,将输入时滞系统转变为非时滞系统。结合神经网络控制、积分中值定理与Decoupled Backstepping技巧,针对该类系统提出一套自适应控制策略。所提出的控制器保证闭环系统的所有信号皆4阶矩半全局一致最终有界,并且跟踪误差收敛于原点附近的小邻域内。仿真实验结果验证了所提出控制策略的有效性。 展开更多
关键词 随机非线性系统 自适应控制 神经网络(NN) BACKSTEPPING 输入时滞
在线阅读 下载PDF
基于粒子群-变分模态分解、非线性自回归神经网络与门控循环单元的滑坡位移动态预测模型研究 被引量:17
16
作者 姜宇航 王伟 +3 位作者 邹丽芳 王如宾 刘世藩 段雪雷 《岩土力学》 EI CAS CSCD 北大核心 2022年第S01期601-612,共12页
以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将... 以三峡库区八字门阶跃型滑坡为例,针对静态机器学习模型在周期项位移预测中的不足以及高频随机项位移预测困难等问题,提出了一种新的滑坡位移预测方法。基于时间序列分解思想,采用粒子群算法(PSO)对变分模态分解(VMD)进行参数寻优,并将位移时间序列分解为趋势项、周期项和随机项。趋势项主要受滑坡内部因素影响,采用傅里叶曲线进行拟合预测;周期项由外部因素导致,基于格兰杰因果检验进行成因分析,并引入一种对时间序列历史状态具有较高敏感性的非线性自回归神经网络(NARX)进行预测;随机项频率较高且影响因素无法判定,采用一维门控循环单元(GRU)进行预测。最后将各分量预测位移进行叠加重构,实现滑坡累计位移的预测。结果表明,提出的(PSO-VMD)-NARX-GRU滑坡位移动态预测模型精度较高,且各位移分量预测精度明显高于静态模型中BP神经网络、支持向量机(SVM)和传统自回归模型ARIMA,可为阶跃型滑坡位移预测提供参考。 展开更多
关键词 滑坡位移预测 粒子群算法 变分模态分解 格兰杰因果检验 非线性自回归神经网络 门控循环单元
在线阅读 下载PDF
变风量空调系统用非线性模型预测控制方法研究 被引量:12
17
作者 陈炯德 王子轩 +3 位作者 姚晔 王绍凡 冯静梅 赵鹏生 《制冷学报》 CAS CSCD 北大核心 2019年第6期62-69,共8页
在工业HVAC系统中,为了提高在大扰量下的控制精度,模型预测控制(MPC)被广泛应用。本文提出一种用于变风量(VAV)系统的非线性MPC。该非线性MPC采用具有外部输入的非线性自回归网络(NARX)和粒子群优化算法(PSO)。NARX模型旨在预测VAV系统... 在工业HVAC系统中,为了提高在大扰量下的控制精度,模型预测控制(MPC)被广泛应用。本文提出一种用于变风量(VAV)系统的非线性MPC。该非线性MPC采用具有外部输入的非线性自回归网络(NARX)和粒子群优化算法(PSO)。NARX模型旨在预测VAV系统的受控参数(室温),PSO作为优化器,来获得VAV系统的最优控制变量。通过为成本函数的目标分配不同的权值,本文提出的非线性MPC能权衡VAV系统的控制精度和节能需求,以达到不同的控制效果。不同权值的两种方案在实验室的VAV系统中得到了验证,其中方案1仅考虑控制精度,方案2同时考虑了控制精度和节能性。分别将实验得到的两种方案的MPC的控制效果与基于PI控制器的定静压方法进行对比,实验结果表明:基于MPC的方案1可以实现室温稳定在设定值±0.5℃的控制精度范围;基于MPC的方案2显示出更好的节能特性,与定静压方法对比,节能率达到23.7%。 展开更多
关键词 非线性模型预测控制 变风量系统 神经网络模型 粒子群优化
在线阅读 下载PDF
基于NARNN的城市轨道交通短时进站客流预测 被引量:18
18
作者 李科君 高瑾瑶 +1 位作者 宋建华 任刚 《武汉理工大学学报(交通科学与工程版)》 2020年第1期103-107,共5页
针对城市轨道交通短时进站客流时间序列非线性、动态性的特点,构建了非线性自回归神经网络模型(nonlinear autoregression neural network,NARNN),进行地铁进站客流短时预测.采用地铁AFC刷卡系统的实际数据构造训练及测试样本,分别以5,1... 针对城市轨道交通短时进站客流时间序列非线性、动态性的特点,构建了非线性自回归神经网络模型(nonlinear autoregression neural network,NARNN),进行地铁进站客流短时预测.采用地铁AFC刷卡系统的实际数据构造训练及测试样本,分别以5,15 min的时间测度对工作日及节假日的进站客流进行短时预测.结果显示,不同时间测度下,该模型对两组实验数据均能较好地拟合,表明其有一定的应用价值;与线性时间序列预测模型相比,该模型预测结果具有更小的平均绝对误差和均方根误差,表明其预测精度优于线性时间序列预测模型. 展开更多
关键词 城市轨道交通 短时客流预测 NARNN
在线阅读 下载PDF
基于T-S模糊神经网络组合模型的CPI预测 被引量:4
19
作者 荀新新 张德生 +1 位作者 王雁 杜方欣 《陕西科技大学学报(自然科学版)》 2014年第3期173-176,共4页
首先对我国CPI和PPI序列建立了VAR模型和加外生变量的半参数自回归模型,得到CPI的拟合值和预测值;然后在这两种单模型的基础上,结合模糊数学和神经网络知识,建立了T-S模糊神经网络组合预测模型;最后对三种模型进行比较.结果显示,T-S模... 首先对我国CPI和PPI序列建立了VAR模型和加外生变量的半参数自回归模型,得到CPI的拟合值和预测值;然后在这两种单模型的基础上,结合模糊数学和神经网络知识,建立了T-S模糊神经网络组合预测模型;最后对三种模型进行比较.结果显示,T-S模糊神经网络组合模型提高了预测结果的可靠性和准确性. 展开更多
关键词 VAR模型 加外生变量的半参数自回归模型 T-S模糊神经网络组合模型 隶属度函数
在线阅读 下载PDF
具有输入死区的非线性纯反馈系统的Backstepping控制设计 被引量:4
20
作者 孙莉莉 陈兵 王芳 《青岛大学学报(工程技术版)》 CAS 2018年第3期15-21,共7页
针对一类具有未知死区的非线性纯反馈系统自适应神经网络控制问题,本文提出了基于径向基函数神经网络结构特征的控制设计方案。将未知输入死区表示成一个线性死区与一个有界非线性死区之和的形式,在控制设计过程中,通过神经网络系统逼... 针对一类具有未知死区的非线性纯反馈系统自适应神经网络控制问题,本文提出了基于径向基函数神经网络结构特征的控制设计方案。将未知输入死区表示成一个线性死区与一个有界非线性死区之和的形式,在控制设计过程中,通过神经网络系统逼近未知非线性函数,结合自适应Backsteeping方法及神经网络基函数向量的范数性质,设计了一种自适应神经网络状态控制器,并通过Lyapunov稳定性理论进行稳定性分析。分析结果表明,在该控制方案作用下,闭环系统的所有信号有界,跟踪误差收敛到原点一个足够小的领域,数值仿真验证了本文方法的有效性。该研究具有一定的实用价值。 展开更多
关键词 纯反馈非线性系统 输入死区 自适应控制 BACKSTEPPING 神经网络 状态反馈
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部