期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
基于PSO-NARX网络的司机驾驶行为分析方法 被引量:2
1
作者 王心仪 程剑锋 易海旺 《铁道学报》 EI CAS CSCD 北大核心 2024年第9期94-101,共8页
舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的... 舒适性、准时性、节能性等是衡量高速铁路自动驾驶水平的重要指标,通过不断学习优秀司机的驾驶行为,可以优化列车自动驾驶性能,促进高速铁路自动驾驶技术的发展。基于现场列车运行数据,提出一种带有外部输入的非线性自回归(NARX)网络的列车司机驾驶行为分析方法。该方法构建了具有时序特征的NARX网络模型,并选取多项影响司机决策的参数作为输入,利用粒子群优化算法(PSO)确定网络的权重和阈值,对下一时刻列车运行情况进行预测。仿真结果表明:本文提出的PSO-NARX网络分析模型的预测效果优于前馈型神经网络(BP)、PSO-BP、NARX,相比于BP算法,迭代步数降低了373步,误差降低了8382%,相关系数达到了90117%。通过此预测,可以优化列车的自动驾驶设备性能指标,保障列车准时的同时,提高了乘客乘坐的舒适性。 展开更多
关键词 高速铁路 非线性自回归神经网络 粒子群优化算法 驾驶行为 辨识
在线阅读 下载PDF
基于EMD优化NAR动态神经网络的地铁客流量短时预测模型 被引量:10
2
作者 马飞虎 金依辰 孙翠羽 《应用科学学报》 CAS CSCD 北大核心 2020年第6期936-943,共8页
为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量... 为了能够更加准确地实现地铁客流预测,提出了一种基于经验模态分解算法(empirical mode decomposition,EMD)优化非线性自回归(nonlinear auto regressive,NAR)动态神经网络的地铁客流量短时预测模型.分析地铁客流量数据后发现日客流量具有一定的变化规律,为此使用了基于时间序列的NAR动态神经网络,该网络具有优秀的非线性动态拟合能力和反馈记忆的功能.结合EMD经验模态分解算法优化NAR动态神经网络预测模型,以此来减少预测误差,提高预测精度.结果显示,EMD-NAR神经网络组合预测模型适用于地铁客流的短时预测,预测精度可达93%,具有较好的应用价值. 展开更多
关键词 地铁客流量 短时预测 非线性自回归动态神经网络 经验模态分解 组合模型
在线阅读 下载PDF
基于NARX神经网络的轮重减载率预测方法 被引量:2
3
作者 潘丽莎 程晓卿 +2 位作者 秦勇 陈浩 邢宗义 《城市轨道交通研究》 北大核心 2012年第8期59-62,共4页
介绍了一种基于神经网络的轮重减载率预测方法。以左轨轨向不平顺、右轨轨向不平顺、左轨高低不平顺、右轨高低不平顺为输入,以轮重减载率为输出,采用贝叶斯正则化算法构建了NARX(外部输入非线性自回归神经网络)。仿真试验结果及与BP神... 介绍了一种基于神经网络的轮重减载率预测方法。以左轨轨向不平顺、右轨轨向不平顺、左轨高低不平顺、右轨高低不平顺为输入,以轮重减载率为输出,采用贝叶斯正则化算法构建了NARX(外部输入非线性自回归神经网络)。仿真试验结果及与BP神经网络的比较表明,采用NARX实现轮重减载率预测是可行而有效的。NARX比BP神经网络更适用于减载率预测。 展开更多
关键词 车辆 轮重减载率 神经网络 narX
在线阅读 下载PDF
基于MI-Granger-NARX融合模型的铁路网规模测算方法 被引量:3
4
作者 钱名军 李引珍 +1 位作者 何瑞春 曾海军 《铁道学报》 EI CAS CSCD 北大核心 2021年第1期28-38,共11页
铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量... 铁路网的建设进程应与经济社会发展保持适度匹配,其路网规模受人口资源、经济社会、交通政策和运营组织等因素影响,具有动态、时滞、非线性的复杂特征。首先,在不依赖先验信息的情况下,运用互信息法对人均GDP、全社会货运量、旅客周转量等12项影响铁路网规模的指标进行互信息计算。接着,运用Granger因果检验对初选指标进一步筛选,获得7项最具解释力的指标。然后,利用NARX良好的学习记忆与延迟反馈功能构建测算模型,以筛选所得7项指标作为自变量输入、铁路网里程序列作为因变量自回归输入测算铁路网里程。最后,将本模型与传统BP、NAR和单一NARX等神经网络模型的测算结果进行验证、对比。结果表明本模型解释能力更强、泛化能力更好和结果精度更高。 展开更多
关键词 铁路网规模 互信息 GRANGER因果关系检验 narX 多元时间序列预测
在线阅读 下载PDF
EMD与NARX神经网络的风电场总功率组合预测 被引量:6
5
作者 张振华 马超 +1 位作者 徐瑾辉 欧阳泽拯 《计算机工程与应用》 CSCD 北大核心 2016年第12期265-270,共6页
探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平... 探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平稳时间序列进行经验模态分解,得到不同频带本征模式分量的平稳序列。对不同频带的平稳分量建立相应的NARX神经网络预测模型,并将各分量模型的预测值进行等权求和得到最终预测值。此外,为研究不同时间间隔对预测结果的影响,采用某大型风电场时间间隔为5 min与15 min的数据进行实验。预测结果表明,提出的组合预测模型适合于总功率预测,其预测效果比传统模型的效果更佳,且时间间隔为5 min的数据比时间间隔为15 min的数据预测精度更高。 展开更多
关键词 经验模态分解 非线性自回归神经网络(带外部输入的)(narX) 非平稳时间序列 风电场 总功率
在线阅读 下载PDF
可重构功放的新颖NARX神经网络逆向建模研究 被引量:1
6
作者 南敬昌 臧净 +1 位作者 高明明 胡婷婷 《微波学报》 CSCD 北大核心 2019年第5期51-56,共6页
针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的... 针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的前馈部分完成数据分类,解决设计中的多解问题。然后应用于可以覆盖多个频段的可重构功率放大器中,实验表明,该方法在精度方面分别优于直接逆向建模方法和自适应η逆向建模方法99.86%和81.32%,计算速度方面优于直接逆向建模方法31.72%,可以降低射频微波可重构功率放大器的设计复杂度、缩短其设计时间。 展开更多
关键词 带外部输入的非线性自回归(narX)神经网络 逆向建模 DAFNN神经元模型 支持向量机 可重构功率放大器
在线阅读 下载PDF
基于NARX神经网络的孤网自治运行能力评估方法 被引量:3
7
作者 刘金生 程维杰 +4 位作者 陈择栖 张俊芳 朱肖镕 柳伟 任祖怡 《南京理工大学学报》 EI CAS CSCD 北大核心 2019年第6期684-692,共9页
为了提高评估准确度,本文提出基于非线性有源自回归(NARX)动态神经网络的孤网自治运行能力综合评估方法。在分析网源荷协调机理的基础上,明确影响孤网自治运行能力的关键因素,包括源源互补、源网协调、源荷协调、网荷互动4个方面。在计... 为了提高评估准确度,本文提出基于非线性有源自回归(NARX)动态神经网络的孤网自治运行能力综合评估方法。在分析网源荷协调机理的基础上,明确影响孤网自治运行能力的关键因素,包括源源互补、源网协调、源荷协调、网荷互动4个方面。在计及多项关键影响因素的基础上,构建1套可评估孤网自治运行能力的指标体系。使用改进灰关联度分析算法与熵值法对神经网络训练样本进行数据处理分析,以设置NARX神经网络模型。采用基于NARX的孤网自治运行能力综合评估方法进行评估,并利用标准化方法量化评估结果。以某地区典型电网为例,证明该文方法与灰关联度分析方法相比,输出值更贴近目标输出值。 展开更多
关键词 非线性有源自回归 神经网络 孤网 自治运行 源荷协调 改进灰关联度分析算法 熵值法 标准化方法
在线阅读 下载PDF
卫星钟差中长期预报的NAR动态神经网络法 被引量:2
8
作者 王旭 张文 《中国惯性技术学报》 EI CSCD 北大核心 2023年第6期578-584,共7页
针对中长期钟差预报中现有模型预报精度和运算效率相互制约的问题,提出一种非线性自回归(NAR)动态神经网络模型,以提高中长期钟差预报精度和运算效率。该模型选择Levenberg-Marquardt(LM)作为网络训练方法并采用递归预测的方法来预报中... 针对中长期钟差预报中现有模型预报精度和运算效率相互制约的问题,提出一种非线性自回归(NAR)动态神经网络模型,以提高中长期钟差预报精度和运算效率。该模型选择Levenberg-Marquardt(LM)作为网络训练方法并采用递归预测的方法来预报中长期钟差,设计了基于钟差变化的建模数据预处理方案。利用NAR模型对GPS卫星钟差进行中长期预报,并与二次多项式(QP)、灰色模型(GM(1,1))、小波神经网络模型(WNN)及T-S模糊神经网络模型(T-SFNN)进行实验对比。实验结果表明:所提方法的中长期预报性能优于QP和GM(1,1)两种模型,其60天的钟差预报精度分别提高了64.5%和93.7%;相比WNN和T-SFNN两种模型,其60天钟差预报的模型运算时间分别缩短了约430s和459s,验证了所提方法在预报精度和运算效率方面具有较好的综合性能。 展开更多
关键词 卫星钟差 非线性自回归模型 小波神经网络 T-S模糊神经网络 预报
在线阅读 下载PDF
插电式混合动力汽车车速预测及整车控制策略 被引量:15
9
作者 连静 刘爽 +3 位作者 李琳辉 周雅夫 杨帆 袁鲁山 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第5期564-574,共11页
本文针对插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)这一典型混杂系统,提出了一种基于车速预测的混合逻辑动态(mixed logical dynamical,MLD)模型预测控制策略.首先,通过对发动机和电动机能量消耗模型进行线性化,建立... 本文针对插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)这一典型混杂系统,提出了一种基于车速预测的混合逻辑动态(mixed logical dynamical,MLD)模型预测控制策略.首先,通过对发动机和电动机能量消耗模型进行线性化,建立双轴并联插电式混合动力城市公交车的动力传动系统数学模型;其次,运用模糊推理进行驾驶意图分析,提出基于驾驶意图识别和历史车速数据相结合的非线性自回归(nonlinear auto-regressive models,NAR)神经网络车速预测方法进行未来行驶工况预测.然后,以最小等效燃油消耗为目标建立PHEV的混合逻辑动态模型,运用预测控制思想对车速预测时域内最优电机转矩控制序列进行求解.最后,通过仿真实验验证了本文所提出控制策略在特定的循环工况下与电动助力策略相比,能够提高燃油经济性. 展开更多
关键词 插电式混合动力汽车 模糊推理 nar神经网络 车速预测 混合逻辑动态模型
在线阅读 下载PDF
隧道围岩变形的非线性自回归时间序列预测方法研究 被引量:15
10
作者 文明 张顶立 +3 位作者 房倩 齐俊 方黄城 陈文博 《北京交通大学学报》 CAS CSCD 北大核心 2017年第4期1-7,共7页
针对传统时间序列预测模型的单一线性和忽略施工过程影响的静态局限性,提出非线性自回归(包括NARNN与NARXNN)时间序列预测模型.该模型通过引入动态施工影响因子作为附加的外部输入,同时结合模型本身的反馈结构和延迟单元,在结构和动态... 针对传统时间序列预测模型的单一线性和忽略施工过程影响的静态局限性,提出非线性自回归(包括NARNN与NARXNN)时间序列预测模型.该模型通过引入动态施工影响因子作为附加的外部输入,同时结合模型本身的反馈结构和延迟单元,在结构和动态特性上更加符合实际系统,可以非线性动态地考虑隧道施工全过程.运用该模型对史家山2号隧道施工过程中的围岩水平收敛和地表变形进行预测.结果表明:1)非线性自回归预测模型比传统的ARMA预测模型的预测精度高、适应性好;2)通过多次预测并对结果取平均值,可以保证非线性自回归预测模型预测结果的预测精度和稳健性;3)通过优化动态施工影响因子的取值方法,可以进一步提高NARXNN时间序列预测模型的预测精度. 展开更多
关键词 公路隧道 时间序列模型 非线性自回归神经网络 动态施工影响因子 围岩变形预测
在线阅读 下载PDF
神经网络预测控制在SCR烟气脱硝系统中应用 被引量:20
11
作者 孟范伟 徐博 +1 位作者 吕晓永 刘胤圻 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第6期778-782,共5页
以自某热电厂350 MW燃煤机组的选择性催化还原(SCR)反应系统所采集的数据为依托,使用神经网络预测控制方法,研究电厂尾气中氮氧化物排放的预测及控制问题.利用神经网络的方法进行模型辨识,利用预测控制的思想对喷氨量进行控制,既可使尾... 以自某热电厂350 MW燃煤机组的选择性催化还原(SCR)反应系统所采集的数据为依托,使用神经网络预测控制方法,研究电厂尾气中氮氧化物排放的预测及控制问题.利用神经网络的方法进行模型辨识,利用预测控制的思想对喷氨量进行控制,既可使尾气达到限排标准,亦能减少用氨量,提升经济效益的同时减少氨逃逸.采用最速梯度方法进行控制器的优化,并通过性能函数来约束控制量,达到预期输出.最后将仿真结果与现场所测数据进行对比,结果表明神经网络预测控制方案可以较准确地预测出未来有限时刻所需的喷氨量. 展开更多
关键词 选择性催化还原 神经网络 预测控制 非线性自回归算法 模型辨识
在线阅读 下载PDF
设备故障趋势预测的分析与应用 被引量:11
12
作者 续媛君 潘宏侠 《振动.测试与诊断》 EI CSCD 2006年第4期305-308,共4页
研究了设备故障趋势的预测方法,介绍了非线性自回归模型,提出将BP神经网络与非线性自回归模型相结合,针对实验室JZQ250型齿轮箱的测试系统建立了基于振动信号的神经网络预测模型。采用MATLAB软件中自带的神经网络工具箱,利用模块化的编... 研究了设备故障趋势的预测方法,介绍了非线性自回归模型,提出将BP神经网络与非线性自回归模型相结合,针对实验室JZQ250型齿轮箱的测试系统建立了基于振动信号的神经网络预测模型。采用MATLAB软件中自带的神经网络工具箱,利用模块化的编程思想,编程实现了神经网络预测模型,并利用实验室数据的峭度指标进行了实验。首先给出网络的输入及对应的目标输出,然后经过训练获得网络的权值和阈值,最终构建齿轮箱故障趋势的预测神经网络,用来预测齿轮箱的故障趋势。结果表明,该模型能够有效地短期预测齿轮箱的典型故障,可以用于齿轮箱的故障诊断。 展开更多
关键词 预测 BP神经网络 建模 非线性自回归 故障诊断 齿轮箱
在线阅读 下载PDF
基于履带车辆车体动态响应的行驶路面不平度识别 被引量:4
13
作者 凌启辉 戴巨川 +3 位作者 陈盛钊 孙飞鹰 汪国胜 廖力力 《中国机械工程》 EI CAS CSCD 北大核心 2022年第1期62-69,共8页
建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评... 建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评价指标,并给出了上述三个指标的融合方法。基于正交试验设计的思路分析并实现了路面不平度识别模型输入数量和识别效果的平衡,简化了测试系统传感器的布置。分析了不同的路面、采样频率和车速下的路面不平度识别效果。结果表明,提出的不平度识别方法满足工程实际需求。 展开更多
关键词 履带车辆 路面不平度识别 动态响应 带外源输入的非线性自回归神经网络
在线阅读 下载PDF
自回归神经网络的电离层总电子含量预报 被引量:10
14
作者 吉长东 王强 +1 位作者 沈祎凡 潘飞 《导航定位学报》 CSCD 2018年第4期96-101,共6页
为了进一步提高TEC的预报精度,针对TEC时间序列高噪声、非平稳、包含线性和非线性动态序列的特性,运用经验模态分解和非线性自回归动态神经网络,基于分解-预测-重构的思想构建EMD-NAR预测模型;并对比分析EMD-NAR组合模型和单一模型的预... 为了进一步提高TEC的预报精度,针对TEC时间序列高噪声、非平稳、包含线性和非线性动态序列的特性,运用经验模态分解和非线性自回归动态神经网络,基于分解-预测-重构的思想构建EMD-NAR预测模型;并对比分析EMD-NAR组合模型和单一模型的预报精度,同时运用EMD-NAR预测模型分析不同环境下的电离层TEC时间序列。实验结果表明EMD-NAR动态神经网络模型能很好地反映电离层TEC的变化特性,平静期和活跃期的预测平均相对精度分别为94%和88.3%,预报残差小于1个TECu的分别占71%和68.5%,小于3个TECu的分别占90.3%和87.5%。 展开更多
关键词 非线性自回归神经网络 电离层预报 时间序列 经验模态分解 总电子含量
在线阅读 下载PDF
基于XGBoost的溶解氧预测模型研究 被引量:7
15
作者 袁红春 毛瑞 +2 位作者 杨蒙召 张天蛟 黄俊豪 《传感器与微系统》 CSCD 2020年第10期51-53,57,共4页
为了提高溶解氧的预测精度,以水产品溯源与安全预警平台的监测数据为基础,提出一种基于XGBoost模型的水质参数预测方法,并与LSTM和PCA-NARX网络预测模型进行48h内的溶解氧预测对比。仿真结果表明:通过XGBoost模型预测的结果均方根误差(R... 为了提高溶解氧的预测精度,以水产品溯源与安全预警平台的监测数据为基础,提出一种基于XGBoost模型的水质参数预测方法,并与LSTM和PCA-NARX网络预测模型进行48h内的溶解氧预测对比。仿真结果表明:通过XGBoost模型预测的结果均方根误差(RMSE)最小,在24 h和48 h内的泛化能力均高于LSTM和PCA-NARX模型。 展开更多
关键词 水质参数 XGBoost模型 长短时记忆(LSTM)神经网络 PCA-narX神经网络
在线阅读 下载PDF
基于优化非线性自回归神经网络模型的水质预测 被引量:14
16
作者 唐亦舜 徐庆 +1 位作者 刘振鸿 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2022年第3期93-100,共8页
针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(... 针对突发性水污染事件频发的问题,以上海市某支流具有代表性的监测断面为研究对象,通过优化调整输入数据段以及延迟阶数与隐含层神经元数等模型参数,构建基于历史水质时间序列的优化非线性自回归(NAR)神经网络模型,预测分析pH、溶解氧(DO)质量浓度和浊度3项水质指标的变化趋势。结果表明:优化后的NAR神经网络模型具有较好的非线性处理能力;当输入数据量为180,pH、DO质量浓度和浊度的神经网络模型的延迟阶数分别为2、3、9,隐含层神经元数为10时,NAR神经网络模型对pH、DO质量浓度和浊度的预测均方根误差分别为0.053、0.382 mg/L和17.300 NTU,平均绝对百分比误差分别为0.53%、3.97%和18.01%,预测效果较好。 展开更多
关键词 水质预测 非线性自回归神经网络 PH 溶解氧 浊度 模型优化
在线阅读 下载PDF
工业大气污染物浓度的复合自回归网络预测 被引量:4
17
作者 卢雨田 王小艺 +2 位作者 王立 许继平 白玉廷 《计算机工程与应用》 CSCD 北大核心 2019年第18期223-228,235,共7页
针对工业园区大气污染管理中预测能力较弱的问题,考虑工业大气污染物的多因素耦合及非线性时序特征,提出一种工业大气污染物浓度预测方法。根据预测指标数值特征,提出复合自回归神经网络(CNAR)。对目标预测指标及影响因素进行关联分析... 针对工业园区大气污染管理中预测能力较弱的问题,考虑工业大气污染物的多因素耦合及非线性时序特征,提出一种工业大气污染物浓度预测方法。根据预测指标数值特征,提出复合自回归神经网络(CNAR)。对目标预测指标及影响因素进行关联分析及时序建模,实现对工业大气污染物浓度的短期预测。选用河北省某市大气网格化监测数据进行模型训练与方法验证,实验结果表明CNAR预测模型可对工业大气污染物浓度进行有效预测,效果优于传统自回归神经网络,为工业大气污染防控提供参考依据。 展开更多
关键词 神经网络 非线性自回归 时序预测 工业大气污染
在线阅读 下载PDF
基于多反馈环结构提高硬件储备池记忆能力 被引量:1
18
作者 李磊 方捻 +1 位作者 王陆唐 黄肇明 《电子学报》 EI CAS CSCD 北大核心 2018年第2期298-303,共6页
针对单反馈环硬件储备池记忆能力不足的问题,提出一种基于多反馈环结构提高储备池记忆能力的方法.通过增加反馈环将更早输入信号产生的响应重新注入回储备池,使更早期的输入信号也影响储备池的内部动态,从而增强储备池的记忆能力.仿真... 针对单反馈环硬件储备池记忆能力不足的问题,提出一种基于多反馈环结构提高储备池记忆能力的方法.通过增加反馈环将更早输入信号产生的响应重新注入回储备池,使更早期的输入信号也影响储备池的内部动态,从而增强储备池的记忆能力.仿真研究了单个和多个反馈环结构的储备池的记忆能力及其在需要更长记忆能力的NARMA30任务中的预测性能.结果表明,把反馈环增加到10个,虚节点数为50时储备池的记忆能力由单反馈环的18.2提高到40.2.仅用两个反馈环,虚节点数为1000时NARMA30预测的归一化均方根误差可从单反馈环的0.27降到0.09.说明通过合理设置多个反馈环的参数,可以设计出任务需要的特定记忆能力,部分解决了储备池的适应性问题. 展开更多
关键词 递归神经网络 硬件储备池 多反馈环 记忆能力 30阶非线性自回归移动平均(narMA30)
在线阅读 下载PDF
基于改进非线性自回归网络的洪水预测算法 被引量:4
19
作者 崔雅博 罗清元 刘丽娜 《沈阳工业大学学报》 CAS 北大核心 2023年第1期84-89,共6页
针对流域的洪水预测具有高度非线性和随机性的问题,提出了一种混合预测模型用于流域的洪水预测.该模型是一个集成了数据预处理模块的具有外部输入的非线性自回归神经网络,采用小波变换进行时间序列分解,利用多基因遗传编程进行细节缩放... 针对流域的洪水预测具有高度非线性和随机性的问题,提出了一种混合预测模型用于流域的洪水预测.该模型是一个集成了数据预处理模块的具有外部输入的非线性自回归神经网络,采用小波变换进行时间序列分解,利用多基因遗传编程进行细节缩放,以提高时域和频域特性的提取能力,进一步捕获时间序列的非平稳性,与NARX结合可以大幅提高洪水预测的准确性,利用栾川水文站15年中所测水文数据对所提模型进行验证和测试.实验结果表明,相比较于传统算法和其他预测算法,所提出的算法具有更高的预测准确度和性能,可广泛应用在洪水预测等领域. 展开更多
关键词 洪水预测 非线性自回归网络 混合预测模型 小波变换 多基因遗传编程 数据预处理 机器学习 神经网络
在线阅读 下载PDF
基于预测模型的发电厂异常数据辨识方法 被引量:6
20
作者 高骞 张浩天 汤奕 《电力工程技术》 2020年第4期164-170,共7页
发电统计数据是我国实施电力监管的重要依据,其中的发电厂用电率作为反映电厂生产效能、论证节能降耗情况的关键指标,验证其上报数据的真实性和准确性十分重要。为此,提出一种基于预测模型的发电厂异常数据辨识方法。该方法首先利用Adab... 发电统计数据是我国实施电力监管的重要依据,其中的发电厂用电率作为反映电厂生产效能、论证节能降耗情况的关键指标,验证其上报数据的真实性和准确性十分重要。为此,提出一种基于预测模型的发电厂异常数据辨识方法。该方法首先利用Adaboost改进非线性有源自回归模型(NARX)神经网络构建发电厂用电率预测模型,通过不断引入上报值以动态的方式对当前时刻发电厂用电率进行预测。当发电厂用电率时间序列出现突变时,残差时间序列会出现明显的增大或减小,进而利用孤立森林算法得到各残差向量组的异常分值从而辨识出异常点。最后,利用该方法对注入了虚假数据的实际发电数据进行辨识,验证了所提方法的有效性。 展开更多
关键词 发电厂用电率 异常数据 非线性有源自回归模型(narX)神经网络 ADABOOST算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部