In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE...In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.展开更多
This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output f...An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.展开更多
A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once ...A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.展开更多
Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control prot...Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.展开更多
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe...This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.展开更多
This paper proposes a multivariable fixed-time leaderfollower formation control method for a group of nonholonomic mobile robots, which has the ability to estimate multiple uncertainties. Firstly, based on the state s...This paper proposes a multivariable fixed-time leaderfollower formation control method for a group of nonholonomic mobile robots, which has the ability to estimate multiple uncertainties. Firstly, based on the state space model of the leader-follower formation, a multivariable fixed-time formation kinematics controller is designed. Secondly, to overcome uncertainties existing in the nonholonomic mobile robot system, such as load change,friction, external disturbance, a multivariable fixed-time torque controller based on the fixed-time disturbance observer at the dynamic level is designed. The designed torque controller is cascaded with the formation controller and finally realizes accurate estimation of the uncertain part of the system, the follower tracking of reference velocity and the desired formation of the leader and the follower in a fixed-time. The fixed-time upper bound is completely determined by the controller parameters, which is independent of the initial state of the system. The multivariable fixed-time control theory and the Lyapunov method are adopted to ensure the system stability.Finally, the effectiveness of the proposed algorithm is verified by the experimental simulation.展开更多
A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contaminat...A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.展开更多
基金supported by the Beijing Natural Science Foundation(4222053).
文摘In this paper,the formation control problem of secondorder nonholonomic mobile robot systems is investigated in a dynamic event-triggered scheme.Event-triggered control protocols combined with persistent excitation(PE)conditions are presented.In event-detecting processes,an inactive time is introduced after each sampling instant,which can ensure a positive minimum sampling interval.To increase the flexibility of the event-triggered scheme,internal dynamic variables are included in event-triggering conditions.Moreover,the dynamic event-triggered scheme plays an important role in increasing the lengths of time intervals between any two consecutive events.In addition,event-triggered control protocols without forward and angular velocities are also presented based on approximate-differentiation(low-pass)filters.The asymptotic convergence results are given based on a nested Matrosov theorem and artificial sampling methods.
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
基金Project(60704005) supported by the National Natural Science Foundation of China Project(07ZR14119) supported by Natural Science Foundation of Shanghai Science and Technology Commission Project(2009AA04Z213) supported by the National High-Tech Research and Development Program of China
文摘An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.
基金Projects(90820302,60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education of China+1 种基金Projects(2009FJ4030) supported by Academician Foundation of Hunan Province,ChinaProject supported by the Freedom Explore Program of Central South University,China
文摘A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.
基金supported by the National Natural Science Foundation of China(61175112)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(G61321002)+3 种基金the Projects of Major International(Regional)Joint Research Program(61120106010)the Beijing Education Committee Cooperation Building Foundationthe Program for Changjiang Scholars and Innovative Research Team in University(IRT1208)the ChangJiang Scholars Program and the Beijing Outstanding Ph.D.Program Mentor Grant(20131000704)
文摘Analysis and design techniques for cooperative flocking of nonholonomic multi-robot systems with connectivity maintenance on directed graphs are presented. First, a set of bounded and smoothly distributed control protocols are devised via carefully designing a class of bounded artificial potential fields (APF) which could guarantee the connectivity maintenance, col ision avoidance and distance stabilization simultaneously during the system evolution. The connectivity of the underlying network can be preserved, and the desired stable flocking behavior can be achieved provided that the initial communication topology is strongly connected rather than undirected or balanced, which relaxes the constraints for group topology and extends the previous work to more generalized directed graphs. Furthermore, the proposed control algorithm is extended to solve the flocking problem with a virtual leader. In this case, it is shown that al robots can asymptotically move with the desired velocity and orientation even if there is only one informed robot in the team. Finally, nontrivial simulations and experiments are conducted to verify the effectiveness of the proposed algorithm.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.62173312 and 61803348in part by the National Major Scientific Instruments Development Project under Grant No.61927807+3 种基金in part by the Program for the Innovative Talents of Higher Education Institutions of ShanxiShanxi Province Science Foundation for Excellent Youthsin part by the Shanxi"1331 Project"Key Subjects Construction(1331KSC)in part by Graduate Innovation Project of Shanxi Province under Grant No.2021Y617。
文摘This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution.
基金supported by the National Natural Science Foundation of China(61872204)the Natural Science Foundation of Heilongjiang Province of China(F2015025)。
文摘This paper proposes a multivariable fixed-time leaderfollower formation control method for a group of nonholonomic mobile robots, which has the ability to estimate multiple uncertainties. Firstly, based on the state space model of the leader-follower formation, a multivariable fixed-time formation kinematics controller is designed. Secondly, to overcome uncertainties existing in the nonholonomic mobile robot system, such as load change,friction, external disturbance, a multivariable fixed-time torque controller based on the fixed-time disturbance observer at the dynamic level is designed. The designed torque controller is cascaded with the formation controller and finally realizes accurate estimation of the uncertain part of the system, the follower tracking of reference velocity and the desired formation of the leader and the follower in a fixed-time. The fixed-time upper bound is completely determined by the controller parameters, which is independent of the initial state of the system. The multivariable fixed-time control theory and the Lyapunov method are adopted to ensure the system stability.Finally, the effectiveness of the proposed algorithm is verified by the experimental simulation.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(2011BAK15B06)supported by the National Science and Technology Support Program,China+1 种基金Project(2013M541003)supported by the China Postdoctoral Science FoundationProject(2012YQ090208)supported by the Special-Funded Program on National Key Scientific Instruments and Equipment Development
文摘A performance assisted enhancement Kalman filtering algorithm(PAE-KF) for GPS/INS integration navigation in urban areas was presented in this work. The aim of this PAE-KF algorithm was to prevent "deep contamination" caused by error GPS data. This filtering algorithm effectively combined fault estimation of raw GPS data and nonholonomic constraint of vehicle. In fault estimation, a change point detection algorithm based on abrupt change model was proposed. Statistical tool was then used to infer the future bound of GPS data, which can detect faults in GPS raw data. If any kinds of faults were detected, dead reckoning mechanism begins to compute current position. Nonholonomic constraint condition of vehicle was used to estimate velocity of vehicle and change point detection was added into classic Kalman filtering structure. Experiment on vehicle shows that even when the GPS signals are unavailable for a period of time, this method can also output high accuracy data.