A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems...A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.展开更多
This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems...This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.展开更多
基金supported by the National Natural Science Foundation of China (9071602811001128)
文摘A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.
基金supported by the Fundamental Research Funds for Central Universities(N100604002)
文摘This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters.