Based on excitation-resonance mass testing principle, a proper experiment testing system is designed for annular parts. The dynamics characters of the axis sleeve, which is made of a new Mn-Cu alloy and used as a vibr...Based on excitation-resonance mass testing principle, a proper experiment testing system is designed for annular parts. The dynamics characters of the axis sleeve, which is made of a new Mn-Cu alloy and used as a vibration reductor in high acceleration rotary testing machine for fusee, is investigated. The relationship between stiffness coefficient and utilizing frequency is obtained, and the simplified dynamics model of crystal is established From the viewpoint of crystal microstructure of the Mn-Cu alloy, the experiment result is analyzed by the viscoelastic theory, and the characters of stress and strain in the condition of high frequency are discussed. The results indicate that the Mn-Cu alloy annular parts are fit to be used on the high accleration rotary testing machine for fusee.展开更多
In a gas circuit breaker,metal vapor resulting from electrode erosion is injected into the arc plasma.The arc then burns in a mixture of SF;and electrode vapor,which has properties significantly different from those o...In a gas circuit breaker,metal vapor resulting from electrode erosion is injected into the arc plasma.The arc then burns in a mixture of SF;and electrode vapor,which has properties significantly different from those of pure SF;.Thermodynamic properties and transport coefficients of thermal plasmas formed in SF;-copper vapor mixtures change as a function of temperature and pressure.The property that is mostly affected by the presence of copper is electrical conductivity,which is important in magnetohydrodynamic(MHD) analysis.In this study,the transport coefficients of SF;in the presence of 10 percent copper are considered as the basis of MHD simulation.Comparisons are made between the results during arc formation for pure SF;and SF;-Cu mixture in a medium voltage(MV) circuit breaker.According to the transport coefficients influenced by the SF;-Cu mixture,the distribution of the electric potential, temperature,electromagnetic force density and current density of the arc column are presented and discussed.Also,the arc stability and pinch effect near current zero with 3-D simulation are investigated,which is advantageous to improving the efficiency of arc plasma simulation.展开更多
This paper is concerned with a study of wave propagation due to scattering of an obliquely incident wave by a porous vertical plate with nonuniform porosity which is completely submerged in water of finite depth.The p...This paper is concerned with a study of wave propagation due to scattering of an obliquely incident wave by a porous vertical plate with nonuniform porosity which is completely submerged in water of finite depth.The problem is formulated in terms of a Fredholm integral equation of the second kind in difference in potential across the barrier.The integral equation is then solved using two methods:the boundary element method and the collocation method.The reflection coefficients,transmission coefficient,and amount of energy dissipation are evaluated using the solution of the integral equation.It is observed that non-uniform porosity of a barrier has significant effect on the reflection of waves and energy dissipation compared to a barrier with uniform porosity.The dissipation of the wave energy by a non-uniform porous barrier can be enhanced and can be made larger than that of a barrier with uniform porosity,by suitable choice of non-uniform porosity distribution in the barrier.This has an important bearing on reducing the wave power and thereby protecting the shore line from coastal erosion.Also,an obliquely incident wave reduces reflection and dissipation while increasing transmission of wave energy as compared to a normally incident wave.展开更多
基于铝热法制备含2%(质量分数)Al的Cu-Fe合金,采用XRD,SEM,EDS和EBSD技术对Cu-Fe合金的相结构、微观组织进行表征,同时采用HVS-1000A维氏硬度仪和CFT-1材料表面性能测试仪测试Cu-Fe合金的硬度及抗磨损性能。结果表明:利用铝热反应可高...基于铝热法制备含2%(质量分数)Al的Cu-Fe合金,采用XRD,SEM,EDS和EBSD技术对Cu-Fe合金的相结构、微观组织进行表征,同时采用HVS-1000A维氏硬度仪和CFT-1材料表面性能测试仪测试Cu-Fe合金的硬度及抗磨损性能。结果表明:利用铝热反应可高效地制备Cu-Fe合金,成分可控,组织致密无夹杂,其中Fe相均匀地分布在Cu基体中,Cu和Fe的相界面结合良好;Fe相的硬度为322.2HV,基体Cu相的硬度为169.3HV,Cu-Fe合金的电导率为40.8 MS/m。铝热法制备的Cu-Fe合金具有较低的摩擦因数,平均摩擦因数为0.124,磨损率为2.17×10^(-3) mm 3·N^(-1)·m^(-1)。展开更多
In order to increase the evaluating precision of mesh reflection wave, the mesh wave impedance (MWI) is extended to the non-uniform mesh in 1-D and 2-D cases for the first time on the basis of the Yee's positional...In order to increase the evaluating precision of mesh reflection wave, the mesh wave impedance (MWI) is extended to the non-uniform mesh in 1-D and 2-D cases for the first time on the basis of the Yee's positional relation for electromagnetic field components. Lots of characteristics are obtained for different mesh sizes and frequencies. Then the reflection coefficient caused by the non-uniform mesh can be calculated according to the theory of equivalent transmission line. By comparing it with that calculated by MWI in the uniform mesh, it is found that the evaluating error can be largely reduced and is in good agreement with that directly computed by FDTD method. And this extension of MWI can be used in the error analysis of complex mesh.展开更多
The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to...The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to be different for H and D,which are respectively calculated to be~158 me V and~139 me V in height.Using the transfer matrix method(TMM),we are able to calculate the accurate probability of transmission across the barriers.The crucial role of quantum tunneling is clearly demonstrated at low-temperature region.By introducing a temperature-dependent attempting frequency prefactor,the rate constants and diffusion coefficients are calculated.The results are in agreement with the experimental measurements at temperatures from~50 K to 80 K.展开更多
文摘Based on excitation-resonance mass testing principle, a proper experiment testing system is designed for annular parts. The dynamics characters of the axis sleeve, which is made of a new Mn-Cu alloy and used as a vibration reductor in high acceleration rotary testing machine for fusee, is investigated. The relationship between stiffness coefficient and utilizing frequency is obtained, and the simplified dynamics model of crystal is established From the viewpoint of crystal microstructure of the Mn-Cu alloy, the experiment result is analyzed by the viscoelastic theory, and the characters of stress and strain in the condition of high frequency are discussed. The results indicate that the Mn-Cu alloy annular parts are fit to be used on the high accleration rotary testing machine for fusee.
文摘In a gas circuit breaker,metal vapor resulting from electrode erosion is injected into the arc plasma.The arc then burns in a mixture of SF;and electrode vapor,which has properties significantly different from those of pure SF;.Thermodynamic properties and transport coefficients of thermal plasmas formed in SF;-copper vapor mixtures change as a function of temperature and pressure.The property that is mostly affected by the presence of copper is electrical conductivity,which is important in magnetohydrodynamic(MHD) analysis.In this study,the transport coefficients of SF;in the presence of 10 percent copper are considered as the basis of MHD simulation.Comparisons are made between the results during arc formation for pure SF;and SF;-Cu mixture in a medium voltage(MV) circuit breaker.According to the transport coefficients influenced by the SF;-Cu mixture,the distribution of the electric potential, temperature,electromagnetic force density and current density of the arc column are presented and discussed.Also,the arc stability and pinch effect near current zero with 3-D simulation are investigated,which is advantageous to improving the efficiency of arc plasma simulation.
基金partially supported by SVMCM scholarship No.WBP211645525952 by Government of West Bengal,India,through Shreya Banerjee.
文摘This paper is concerned with a study of wave propagation due to scattering of an obliquely incident wave by a porous vertical plate with nonuniform porosity which is completely submerged in water of finite depth.The problem is formulated in terms of a Fredholm integral equation of the second kind in difference in potential across the barrier.The integral equation is then solved using two methods:the boundary element method and the collocation method.The reflection coefficients,transmission coefficient,and amount of energy dissipation are evaluated using the solution of the integral equation.It is observed that non-uniform porosity of a barrier has significant effect on the reflection of waves and energy dissipation compared to a barrier with uniform porosity.The dissipation of the wave energy by a non-uniform porous barrier can be enhanced and can be made larger than that of a barrier with uniform porosity,by suitable choice of non-uniform porosity distribution in the barrier.This has an important bearing on reducing the wave power and thereby protecting the shore line from coastal erosion.Also,an obliquely incident wave reduces reflection and dissipation while increasing transmission of wave energy as compared to a normally incident wave.
文摘基于铝热法制备含2%(质量分数)Al的Cu-Fe合金,采用XRD,SEM,EDS和EBSD技术对Cu-Fe合金的相结构、微观组织进行表征,同时采用HVS-1000A维氏硬度仪和CFT-1材料表面性能测试仪测试Cu-Fe合金的硬度及抗磨损性能。结果表明:利用铝热反应可高效地制备Cu-Fe合金,成分可控,组织致密无夹杂,其中Fe相均匀地分布在Cu基体中,Cu和Fe的相界面结合良好;Fe相的硬度为322.2HV,基体Cu相的硬度为169.3HV,Cu-Fe合金的电导率为40.8 MS/m。铝热法制备的Cu-Fe合金具有较低的摩擦因数,平均摩擦因数为0.124,磨损率为2.17×10^(-3) mm 3·N^(-1)·m^(-1)。
文摘In order to increase the evaluating precision of mesh reflection wave, the mesh wave impedance (MWI) is extended to the non-uniform mesh in 1-D and 2-D cases for the first time on the basis of the Yee's positional relation for electromagnetic field components. Lots of characteristics are obtained for different mesh sizes and frequencies. Then the reflection coefficient caused by the non-uniform mesh can be calculated according to the theory of equivalent transmission line. By comparing it with that calculated by MWI in the uniform mesh, it is found that the evaluating error can be largely reduced and is in good agreement with that directly computed by FDTD method. And this extension of MWI can be used in the error analysis of complex mesh.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474285 and 12074382)。
文摘The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to be different for H and D,which are respectively calculated to be~158 me V and~139 me V in height.Using the transfer matrix method(TMM),we are able to calculate the accurate probability of transmission across the barriers.The crucial role of quantum tunneling is clearly demonstrated at low-temperature region.By introducing a temperature-dependent attempting frequency prefactor,the rate constants and diffusion coefficients are calculated.The results are in agreement with the experimental measurements at temperatures from~50 K to 80 K.