期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Non-Supervised Learning for Spread Spectrum Signal Pseudo-Noise Sequence Acquisition
1
作者 Hao Cheng Na Yu Tai-Jun Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2015年第1期83-86,共4页
An idea of estimating the direct sequence spread spectrum(DSSS) signal pseudo-noise(PN) sequence is presented. Without the apriority knowledge about the DSSS signal in the non-cooperation condition, we propose a s... An idea of estimating the direct sequence spread spectrum(DSSS) signal pseudo-noise(PN) sequence is presented. Without the apriority knowledge about the DSSS signal in the non-cooperation condition, we propose a self-organizing feature map(SOFM) neural network algorithm to detect and identify the PN sequence. A non-supervised learning algorithm is proposed according the Kohonen rule in SOFM. The blind algorithm can also estimate the PN sequence in a low signal-to-noise(SNR) and computer simulation demonstrates that the algorithm is effective. Compared with the traditional correlation algorithm based on slip-correlation, the proposed algorithm's bit error rate(BER) and complexity are lower. 展开更多
关键词 Blind estimation direct sequence spread spectrum signal non-supervised learning pseudo-noise sequence
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部