An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith...An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths.展开更多
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh...The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.展开更多
Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a gro...Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.展开更多
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem wi...In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.展开更多
In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific re...In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this a...The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency.展开更多
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi...Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.展开更多
Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2...Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2-D (horizontal) path arrangement problem. By modeling the antiaircraft threat, the UAV mission planning can be mapped to the traveling seaman problem (TSP). A new algorithm is presented to solve the TSP. The algorithm combines the traditional ant colony system (ACS) with particle swarm optimization (PSO), thus being called the AC-PSO algorithm. It uses one by one tour building strategy like ACS to determine that the target point can be chosen like PSO. Experiments show that AC-PSO synthesizes both ACS and PSO and obtains excellent solution of the UAV mission planning with a higher accuracy.展开更多
The problem of path planning is studied for t he case for a mobile robot moving in a known environment. An aggressive algorith m using a description of the obstacles based on a neural network is proposed. Th e algorit...The problem of path planning is studied for t he case for a mobile robot moving in a known environment. An aggressive algorith m using a description of the obstacles based on a neural network is proposed. Th e algorithm allows to construct an optimal path which is piecewise linear with c hanging directions of the obstacles and the calculation speed for the proposed a lgorithm is comparatively fast. Simulation results and an application to a car_l ike robot 'Khepera' show the effectiveness of the proposed algorithm.展开更多
The frequency planning for a cellular system enhanced with two-hop fixed relay nodes (FRNs) is investigated. It is assumed that there is no performance-enhancing technique on the base station (BS)-FRN links. Under...The frequency planning for a cellular system enhanced with two-hop fixed relay nodes (FRNs) is investigated. It is assumed that there is no performance-enhancing technique on the base station (BS)-FRN links. Under the assumed condition, two frequency planning schemes are proposed by the principle of reuse partitioning (RP). The frequency planning schemes are compared with the channel-borrowing-based frequency planning scheme and the conventional frequency planning scheme without relaying. Theoretical analysis and simulation results show that the proposed schemes can improve the service quality for mobile terminals close to cell boundaries and provide better performance over the channel-borrowing-based frequency planning. Finally, to fully exploit the potentials of FRN enhanced cellular system, some performance enhancing techniques on BS-FRN links are indispensable.展开更多
This paper described the main four basic models of ideal landscape in the Mount Lushan National Park as Kunlunshan model, Xumishan model, Peach flower land model, Christian model. Five typical places in Mount Lushan w...This paper described the main four basic models of ideal landscape in the Mount Lushan National Park as Kunlunshan model, Xumishan model, Peach flower land model, Christian model. Five typical places in Mount Lushan with the ideal landscape characteristics like the East Grove Temple, White Deer Cave Academy, Simplicity and Tranquility Monastery, Lushan Valley, and Villa-cluster of the East Valley were analyzed, and the integration of the basic models for each place was discussed to make the realistic landscape conform to the ideal needs. Moreover, the discussions also involved the characteristics of ideal landscape that are featured in resource, culture, structure, function, process, scale and region. In conclusion, ideal landscape in the Mount Lushan National Park was the product of the interaction between human and nature. Mount Lushan inherits the essence of Chinese traditional culture with a history of more than 1000 years; and it also absorbs the manna of the Western culture as well as the exchanges between nature and humanities together with the conflict and adaptation among different cultures. The natural landscape could be satisfied with the survival demand and cultural taste of mankind by the way of ecological planning.展开更多
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, ...A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.展开更多
The teaching contents of English major need to be designed flexibly with revolving around career planning as it is helpful for teachers to acquire creative thoughts and ideas in teaching.Especially,this can surely gua...The teaching contents of English major need to be designed flexibly with revolving around career planning as it is helpful for teachers to acquire creative thoughts and ideas in teaching.Especially,this can surely guarantee the remarkable efficiency of English major teaching.展开更多
Language planning plays a very important role in this world of globalization and multilingualism.With globalization,English has become a lingua franca for the whole world,whereas there seems to be an urgent need to pr...Language planning plays a very important role in this world of globalization and multilingualism.With globalization,English has become a lingua franca for the whole world,whereas there seems to be an urgent need to preserve and protect local languages and cultures.How to linguistically achieve the aim of unity in diversity is of great significance to both linguists and soci?olinguists.This article intends to explore how to create a harmonious language ecology.From the perspective of language ecolo?gy,the article firstly discusses such issues as language planning and Language Ecology.It is then dedicated to the study of language planning and policy in Singapore by giving an account of the development of language policy in Singapore,how various languag?es coexist harmoniously,its bilingual policy,and illustrating how multilingualism and multiculturalism have been successfully prac?ticed in Singapore.Finally,some implications for language planning in China in dealing with the protection of minority languag?es,and solutions to intractable language problems in the execution of One Belt One Road policy are provided.展开更多
This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path plannin...This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics.展开更多
基金Supported by the Tianjin University of Technology Graduate R esearch Innovation Project(YJ2281).
文摘An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths.
基金Supported by the EDD of China(No.80912020104)the Science and Technology Commission of Shanghai Municipality(No.22ZR1427700 and No.23692106900).
文摘The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.
文摘Unmanned autonomous helicopter(UAH)path planning problem is an important component of the UAH mission planning system.Aiming to reduce the influence of non-complete ground threat information on UAH path planning,a ground threat prediction-based path planning method is proposed based on artificial bee colony(ABC)algorithm by collaborative thinking strategy.Firstly,a dynamic threat distribution probability model is developed based on the characteristics of typical ground threats.The dynamic no-fly zone of the UAH is simulated and established by calculating the distribution probability of ground threats in real time.Then,a dynamic path planning method for UAH is designed in complex environment based on the real-time prediction of ground threats.By adding the collision warning mechanism to the path planning model,the flight path could be dynamically adjusted according to changing no-fly zones.Furthermore,a hybrid enhanced ABC algorithm is proposed based on collaborative thinking strategy.The proposed algorithm applies the leader-member thinking mechanism to guide the direction of population evolution,and reduces the negative impact of local optimal solutions caused by collaborative learning update strategy,which makes the optimization performance of ABC algorithm more controllable and efficient.Finally,simulation results verify the feasibility and effectiveness of the proposed ground threat prediction path planning method.
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金supported by the National Natural Science Foundation of China(No.61903036)。
文摘In response to the uncertainty of information of the injured in post disaster situations,considering constraints such as random chance and the quantity of rescue resource,the split deliv-ery vehicle routing problem with stochastic demands(SDVRPSD)model and the multi-depot split delivery heterogeneous vehicle routing problem with stochastic demands(MDSDHVRPSD)model are established.A two-stage hybrid variable neighborhood tabu search algorithm is designed for unmanned vehicle task planning to minimize the path cost of rescue plans.Simulation experiments show that the solution obtained by the algorithm can effectively reduce the rescue vehicle path cost and the rescue task completion time,with high optimization quality and certain portability.
文摘In the capacity planning of hydro-wind-solar power systems(CPHPS),it is crucial to use flexible hydropower to complement the variable wind-solar power.Hydropower units must be operated such that they avoid specific restricted operation zones,that is,forbidden zones(FZs),to avoid the risks associated with hydropower unit vibration.FZs cause limitations in terms of both the hydropower generation and flexible regulation in the hydro-wind-solar power systems.Therefore,it is essential to consider FZs when determining the optimal wind-solar power capacity that can be compensated by the hydropower.This study presents a mathematical model that incorporates the FZ constraints into the CPHPS problem.Firstly,the FZs of the hydropower units are converted into those of the hydropower plants based on set theory.Secondly,a mathematical model was formulated for the CPHPS,which couples the FZ constraints of hydropower plants with other operational constraints(e.g.,power balance constraints,new energy consumption limits,and hydropower generation functions).Thirdly,dynamic programming with successive approximations is employed to solve the proposed model.Lastly,case studies were conducted on the hydro-wind-solar system of the Qingshui River to demonstrate the effectiveness of the proposed model.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘The ability to predict the anti-interference communications performance of unmanned aerial vehicle(UAV)data links is critical for intelligent route planning of UAVs in real combat scenarios.Previous research in this area has encountered several limitations:Classifiers exhibit low training efficiency,their precision is notably reduced when dealing with imbalanced samples,and they cannot be applied to the condition where the UAV’s flight altitude and the antenna bearing vary.This paper proposes the sequential Latin hypercube sampling(SLHS)-support vector machine(SVM)-AdaBoost algorithm,which enhances the training efficiency of the base classifier and circumvents local optima during the search process through SLHS optimization.Additionally,it mitigates the bottleneck of sample imbalance by adjusting the sample weight distribution using the AdaBoost algorithm.Through comparison,the modeling efficiency,prediction accuracy on the test set,and macro-averaged values of precision,recall,and F1-score for SLHS-SVM-AdaBoost are improved by 22.7%,5.7%,36.0%,25.0%,and 34.2%,respectively,compared with Grid-SVM.Additionally,these values are improved by 22.2%,2.1%,11.3%,2.8%,and 7.4%,respectively,compared with particle swarm optimization(PSO)-SVM-AdaBoost.Combining Latin hypercube sampling with the SLHS-SVM-AdaBoost algorithm,the classification prediction model of anti-interference performance of UAV data links,which took factors like three-dimensional position of UAV and antenna bearing into consideration,is established and used to assess the safety of the classical flying path and optimize the flying route.It was found that the risk of loss of communications could not be completely avoided by adjusting the flying altitude based on the classical path,whereas intelligent path planning based on the classification prediction model of anti-interference performance can realize complete avoidance of being interfered meanwhile reducing the route length by at least 2.3%,thus benefiting both safety and operation efficiency.
基金Supported by State Key Laboratory of Robotics and System (HIT) under Grant No.SKLRS200706the Heilongjiang Scientific Research Foundation for Postdoctoral Financial Assistance under Grant No.323630221the Project of Harbin Technological Talent Research Foundation under Grant No.RC2006QN009015
文摘Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
文摘Choosing the best path during unmanned air vehicle (UAV) flying is the target of the UAV mission planning problem. Because of its nearly constant flight height, the UAV mission planning problem can be treated as a 2-D (horizontal) path arrangement problem. By modeling the antiaircraft threat, the UAV mission planning can be mapped to the traveling seaman problem (TSP). A new algorithm is presented to solve the TSP. The algorithm combines the traditional ant colony system (ACS) with particle swarm optimization (PSO), thus being called the AC-PSO algorithm. It uses one by one tour building strategy like ACS to determine that the target point can be chosen like PSO. Experiments show that AC-PSO synthesizes both ACS and PSO and obtains excellent solution of the UAV mission planning with a higher accuracy.
文摘The problem of path planning is studied for t he case for a mobile robot moving in a known environment. An aggressive algorith m using a description of the obstacles based on a neural network is proposed. Th e algorithm allows to construct an optimal path which is piecewise linear with c hanging directions of the obstacles and the calculation speed for the proposed a lgorithm is comparatively fast. Simulation results and an application to a car_l ike robot 'Khepera' show the effectiveness of the proposed algorithm.
文摘The frequency planning for a cellular system enhanced with two-hop fixed relay nodes (FRNs) is investigated. It is assumed that there is no performance-enhancing technique on the base station (BS)-FRN links. Under the assumed condition, two frequency planning schemes are proposed by the principle of reuse partitioning (RP). The frequency planning schemes are compared with the channel-borrowing-based frequency planning scheme and the conventional frequency planning scheme without relaying. Theoretical analysis and simulation results show that the proposed schemes can improve the service quality for mobile terminals close to cell boundaries and provide better performance over the channel-borrowing-based frequency planning. Finally, to fully exploit the potentials of FRN enhanced cellular system, some performance enhancing techniques on BS-FRN links are indispensable.
基金supported by "Cities Farming for the Future, RUAF-CFF"funded by DGIS of the Netherlands and IDRC of Canada+2 种基金the National Natural Science Foundation of China (70503007)the Graduate’s Scientific Research Foundation of Hunan Provincethe Graduate’s Scientific Research Foundation of Central South University of Forestry and Technology (2006bx03)
文摘This paper described the main four basic models of ideal landscape in the Mount Lushan National Park as Kunlunshan model, Xumishan model, Peach flower land model, Christian model. Five typical places in Mount Lushan with the ideal landscape characteristics like the East Grove Temple, White Deer Cave Academy, Simplicity and Tranquility Monastery, Lushan Valley, and Villa-cluster of the East Valley were analyzed, and the integration of the basic models for each place was discussed to make the realistic landscape conform to the ideal needs. Moreover, the discussions also involved the characteristics of ideal landscape that are featured in resource, culture, structure, function, process, scale and region. In conclusion, ideal landscape in the Mount Lushan National Park was the product of the interaction between human and nature. Mount Lushan inherits the essence of Chinese traditional culture with a history of more than 1000 years; and it also absorbs the manna of the Western culture as well as the exchanges between nature and humanities together with the conflict and adaptation among different cultures. The natural landscape could be satisfied with the survival demand and cultural taste of mankind by the way of ecological planning.
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
文摘A new dynamic path planning method in high dimensional workspace, radial based probabilistic roadmap motion (RBPRM) planning method, is presented. Different from general probabilistic roadmap motion planning methods, it uses straight lines as long as possible to construct a path graph, so the final path obtained from the graph is relatively shorter and straighter. Experimental results show the efficiency of the algorithm in finding shorter paths in sparse environment.
文摘The teaching contents of English major need to be designed flexibly with revolving around career planning as it is helpful for teachers to acquire creative thoughts and ideas in teaching.Especially,this can surely guarantee the remarkable efficiency of English major teaching.
文摘Language planning plays a very important role in this world of globalization and multilingualism.With globalization,English has become a lingua franca for the whole world,whereas there seems to be an urgent need to preserve and protect local languages and cultures.How to linguistically achieve the aim of unity in diversity is of great significance to both linguists and soci?olinguists.This article intends to explore how to create a harmonious language ecology.From the perspective of language ecolo?gy,the article firstly discusses such issues as language planning and Language Ecology.It is then dedicated to the study of language planning and policy in Singapore by giving an account of the development of language policy in Singapore,how various languag?es coexist harmoniously,its bilingual policy,and illustrating how multilingualism and multiculturalism have been successfully prac?ticed in Singapore.Finally,some implications for language planning in China in dealing with the protection of minority languag?es,and solutions to intractable language problems in the execution of One Belt One Road policy are provided.
文摘This paper presents the rigorous study of mobile robot navigation techniques used so far.The step by step investigations of classical and reactive approaches are made here to understand the development of path planning strategies in various environmental conditions and to identify research gap.The classical approaches such as cell decomposition(CD),roadmap approach(RA),artificial potential field(APF);reactive approaches such as genetic algorithm(GA),fuzzy logic(FL),neural network(NN),firefly algorithm(FA),particle swarm optimization(PSO),ant colony optimization(ACO),bacterial foraging optimization(BFO),artificial bee colony(ABC),cuckoo search(CS),shuffled frog leaping algorithm(SFLA)and other miscellaneous algorithms(OMA)are considered for study.The navigation over static and dynamic condition is analyzed(for single and multiple robot systems)and it has been observed that the reactive approaches are more robust and perform well in all terrain when compared to classical approaches.It is also observed that the reactive approaches are used to improve the performance of the classical approaches as a hybrid algorithm.Hence,reactive approaches are more popular and widely used for path planning of mobile robot.The paper concludes with tabular data and charts comparing the frequency of individual navigational strategies which can be used for specific application in robotics.