Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establ...A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.展开更多
Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
We report here the observation result of joint observation of long period tremor signals with broadband seismome-ter,tiltmeter and gravimeter at the HUST(Huazhong University of Science and Technology)station.The obser...We report here the observation result of joint observation of long period tremor signals with broadband seismome-ter,tiltmeter and gravimeter at the HUST(Huazhong University of Science and Technology)station.The observed data were compared and analyzed.Since 2005,the several tens of abnormal tremor signals which are weak,com-plex and duration of 2 to 3 days have been synchronously recorded by the different instruments.The tremor signals have the periodic domain in the range of 3 to 5 minutes,20 to 30 minutes and even more than 1 hour.The observa-tion shows such tremors are a physical existence.The analysis indicates that a part of the tremors caused by the typhoon from the western Pacific Ocean.These tremors have a close relationship with wind velocity of typhoon and distance between the typhoon center and the station.Except these,the cause of others is still unclear.展开更多
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non...Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.展开更多
To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed ar...To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.展开更多
To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband ...To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.展开更多
In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(...In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.展开更多
To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. ...To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering.展开更多
Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new...Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic .adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.展开更多
The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondor...The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.展开更多
A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters i...A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB.展开更多
A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm ...A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.展开更多
A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal pr...A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal processing with too complex computation. Based on the fourth-order cumulant with 1-D slices and adaptive filters, an efficient algorithm is proposed to solve the problem and is extended for nonstationary stochastic processes. In order to achieve the accurate parameter estimation of direct sequence spread spectrum (DSSS) signals, the fast step uses the modified fourth-order cumulant to reduce the computing complexity. While the second step employs an adaptive recursive system to estimate the power spectrum in the frequency domain. In the case of intercepted signals without large enough data samples, the estimator provides good performance in parameter estimation and white Gaussian noise suppression. Computer simulations are included to corroborate the theoretical development with different signal-to-noise ratio conditions and recursive coefficients.展开更多
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array...This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.展开更多
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis show...The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.展开更多
An approach based on discrete Karhunen-Loeve transformation of the DS/SS signals is proposed to estimate PN sequence in lower S/N ratio DS/SS signals. Characteristics of self-organization and principle components extr...An approach based on discrete Karhunen-Loeve transformation of the DS/SS signals is proposed to estimate PN sequence in lower S/N ratio DS/SS signals. Characteristics of self-organization and principle components extraction of unsupervised neural networks are exploited adequately. Theoretical analysis and experimental results are provided to show that this approach can work well on the lower S/N ratio input signals.展开更多
The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model ...The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak sig...Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
文摘A model of continuous-time insider trading in which a risk-neutral in-sider possesses two imperfect correlated signals of a risky asset is studied.By conditional expectation theory and filtering theory,we first establish three lemmas:normal corre-lation,equivalent pricing and equivalent profit,which can guarantee to turn our model into a model with insider knowing full information.Then we investigate the impact of the two correlated signals on the market equilibrium consisting of optimal insider trading strategy and semi-strong pricing rule.It shows that in the equilibrium,(1)the market depth is constant over time;(2)if the two noisy signals are not linerly correlated,then all private information of the insider is incorporated into prices in the end while the whole information on the asset value can not incorporated into prices in the end;(3)if the two noisy signals are linear correlated such that the insider can infer the whole information of the asset value,then our model turns into a model with insider knowing full information;(4)if the two noisy signals are the same then the total ex ant profit of the insider is increasing with the noise decreasing,while down to O as the noise going up to infinity;(5)if the two noisy signals are not linear correlated then with one noisy signal fixed,the total ex ante profit of the insider is single-peaked with a unique minimum with respect to the other noisy signal value,and furthermore as the noisy value going to O it gets its maximum,the profit in the case that the real value is observed.
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
文摘We report here the observation result of joint observation of long period tremor signals with broadband seismome-ter,tiltmeter and gravimeter at the HUST(Huazhong University of Science and Technology)station.The observed data were compared and analyzed.Since 2005,the several tens of abnormal tremor signals which are weak,com-plex and duration of 2 to 3 days have been synchronously recorded by the different instruments.The tremor signals have the periodic domain in the range of 3 to 5 minutes,20 to 30 minutes and even more than 1 hour.The observa-tion shows such tremors are a physical existence.The analysis indicates that a part of the tremors caused by the typhoon from the western Pacific Ocean.These tremors have a close relationship with wind velocity of typhoon and distance between the typhoon center and the station.Except these,the cause of others is still unclear.
基金Project(50490272) supported by the National Natural Science Foundation of China project(2004036430) supported bythe Postdoctoral Science Foundation of China
文摘Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.
文摘To estimate the direction-of-arrival (DOA) of wideband coherent signals, a new method by modifying the orthogonality of the projected suhspaces method is proposed. And it can deal with randomly position perturbed arrays by using the Toeplitz method. This method needn't the primary information of DOA for focusing matrix and the sector dividing of interpolated method, which improving the precision of estimation and reducing the computational complexity. Simulations illustrate the effectiveness of this method.
文摘To estimate the angle of arrivals (AOA) of wideband chirp sources, a new timo-frequency algorithm is proposed. In this method, virtual sensors are constructed based on the fact that the steering vectors of wideband chirp signals are linear and vary with time. And the randon Wignersville distribution (RWVD) of real sensors and virtual sensors are calculated to yield the new time-invariable steering vectors, furthermore, the noise and cross terms are suppressed. In addition, the multiple chirp signals are selected by their time-frequency points. The cost of computation is lower than the common AOA estimation methods of wideband sources due to nonrequirement of frequency focusing, interpolating and matrix decomposition, including subspace decomposition. Under the lower signal noise ratio (SNR) condition, the proposed method exhibits better precision than the method of frequency focusing (FF). The proposed method can be further applied to nonuniform linear array (NLA) since it is not confined to the array geometry. Simulation results illustrate the efficacy of the proposed method.
基金supported by the National Science Foundation of China(61561016 61861008+4 种基金 11603041)the Guangxi Natural Science Foundation Project(2018JJA170090)the Innovation Project of Guet Graduate Education(2018YJCX19 2018YJCX31)Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(DH201707)
文摘In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.
基金the National Natural Science Foundation of China (90407007 60372001).
文摘To eliminate the aliasing that appeared during the measurement of multi-components nonstationary signals, a novel kind of anti-aliasing algorithm based on the short time Fourier transform (STFT) is brought forward. First the physical essence of aliasing that occurs is analyzed; second the interpolation algorithm model is setup based on the Hamming window; then the fast implementation of the algorithm using the Newton iteration method is given. Using the numerical simulation the feasibility of algorithm is validated. Finally, the electrical circuit experiment shows the practicality of the algorithm in the electrical engineering.
文摘Synthesis of ultra-wideband (UWB) linear frequency modulation radar signals is a very important technology for microwave imaging, target identification and detection of low radar-cross-section (RCS) targets. A new method of UWB radar signals generation with two-channel signal generator is presented. The realization structure is given; the principle and errors of signal synthesis are analyzed. At the same time, an automatic .adjustment measure of signal phase is proposed because of phase discontinuity of waveform in this method. The simulation experiment and analysis results indicate that radar signals with large instantaneous bandwidth can be generated by means of this method on the condition that the high-speed digital devices are limited.
基金supported by the Program for New Century Excellent Talents in University, Ministry of Education (NCET-05-0803)
文摘The Radon-ambiguity transform (RAT), although efficient for detecting the linear frequency modulated signals (LFMs), is troubled by the energy accumulation of noise in low signal-to-noise ratio (SNR). A secondorder difference (SOD) method is proposed to treat with this problem. In the SOD method, the optimal search step and difference step are derived from the LFM rate resolution formula. The sharpness of the peaks of RAT is measured by curvature, and the sharpness, but not the magnitude of the peaks, is used to detect the LFMs. The SOD method removes the noise energy accumulation and reserves the drastically changing components integrally; thus, it improves the detection probability of LFMs in low SNR. The expected performance of the new method is verified by 100 Monte Carlo simulations.
基金supported by the National Natural Science Foundation of China(61401196)the Jiangsu Provincial Natural Science Foundation of China(BK20140954)+1 种基金the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory(KX152600015/ITD-U15006)the Beijing Shengfeifan Electronic System Technology Development Co.,Ltd(KY10800150036)
文摘A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB.
基金supported by the National Natural Science Foundation of China(617020986170209961331019)
文摘A polynomial-rooting based fourth-order cumulant algorithm is presented for direction-of-arrival(DOA) estimation of second-order fully noncircular source signals, using a uniform linear array(ULA). This algorithm inherits all merits of its spectralsearching counterpart except for the applicability to arbitrary array geometry, while reducing considerably the computation cost.Simulation results show that the proposed algorithm outperforms the previously developed closed-form second-order noncircular ESPRIT method, in terms of processing capacity and DOA estimation accuracy, especially in the presence of spatially colored noise.
文摘A new adaptive estimator for direct sequence spread spectrum (DSSS) signals using fourth-order cumulant based adaptive method is considered. The general higher-order statistics may not be easily applied in signal processing with too complex computation. Based on the fourth-order cumulant with 1-D slices and adaptive filters, an efficient algorithm is proposed to solve the problem and is extended for nonstationary stochastic processes. In order to achieve the accurate parameter estimation of direct sequence spread spectrum (DSSS) signals, the fast step uses the modified fourth-order cumulant to reduce the computing complexity. While the second step employs an adaptive recursive system to estimate the power spectrum in the frequency domain. In the case of intercepted signals without large enough data samples, the estimator provides good performance in parameter estimation and white Gaussian noise suppression. Computer simulations are included to corroborate the theoretical development with different signal-to-noise ratio conditions and recursive coefficients.
基金supported by the National Natural Science Foundation of China(6117119761371045+2 种基金61201307)the Shandong Provincial Natural Science Foundation(ZR2011FM005)the Shandong Provincial Promotive Research Fund for Excellent Young and Middle-aged Scientists(BS2010DX001)
文摘This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.
文摘The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.
文摘An approach based on discrete Karhunen-Loeve transformation of the DS/SS signals is proposed to estimate PN sequence in lower S/N ratio DS/SS signals. Characteristics of self-organization and principle components extraction of unsupervised neural networks are exploited adequately. Theoretical analysis and experimental results are provided to show that this approach can work well on the lower S/N ratio input signals.
基金supported by the National Natural Science Foundation of China(61172159)
文摘The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金supported by the National Natural Science Foundation for Young Scientists of China(61201190)
文摘Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.