An efficient computational approach based on substructure methodology is proposed to analyze the viaduct-pile foundation-soil dynamic interaction under train loads.Thetrain-viaductsubsystemissolvedusingthe dynamic sti...An efficient computational approach based on substructure methodology is proposed to analyze the viaduct-pile foundation-soil dynamic interaction under train loads.Thetrain-viaductsubsystemissolvedusingthe dynamic stiffness integration method,and its accuracy is verified by the existing analytical solution for a moving vehicle on a simply supported beam.For the pile foundation-soil subsystem,the geometric and material properties of piles and soils are assumed to be invariable along the azimuth direction.By introducing the equivalent stiffness of grouped piles,the governing equations of pile foundation-soil interaction are simplified based on Fourier decomposition method,so the three-dimensional problem is decomposedintoseveraltwo-dimensionalaxisymmetricfinite element models.The pile foundation-soil interaction model is verified by field measurements due to shaker loading at pile foundation top.In addition,these two substructures are coupled with the displacement compatibility condition at interface of pier bottom and pile foundation top.Finally,the proposed train-viaduct-pile foundation-soil interaction model was validated by field tests.The results show that the proposed model can predict vibrations of pile foundation and soil accurately,thereby providing a basis for the prediction of pile-soil foundation settlement.The frequency spectra of the vibration in Beijing-Tianjin high-speed railway demonstrated that the main frequencies of the pier top and ground surface are below 100 and 30 Hz,respectively.展开更多
Based on Zeevaert's method, a theoretical formula was developed to calculate the negative skin friction of pile in layered soil. For practical purpose,a cut-and-try method was proposed to determine neutral point. Cas...Based on Zeevaert's method, a theoretical formula was developed to calculate the negative skin friction of pile in layered soil. For practical purpose,a cut-and-try method was proposed to determine neutral point. Case studies indicate that the total calculated negative skin friction was in agreement with the measured one, which verifies the feasibility and practicability of theoretical formula. Furthermore, the methods for calculating efficiency factor of drag load and settlement were also given.展开更多
A series of triaxial compression tests were arried out by means of composite-reinforced soil samples to simulate the interaction between soil and pile. The samples are made of gravel or lime-soil with different length...A series of triaxial compression tests were arried out by means of composite-reinforced soil samples to simulate the interaction between soil and pile. The samples are made of gravel or lime-soil with different length at the center. The experiment indicates that the strength of the composite samples can not be obtained by superimposure of reinforcing pile and soil simply according to their replacement proportion. It also indicates the law for stress ratio of reinforcing column to soil. The stress ratio of reinforcing column to soil increases and reaches peak rapidly while load and strain is small. Then the ratio decreases. This law is in accordance with the measuring resuits in construction site.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52125803,51988101 and 52008369)。
文摘An efficient computational approach based on substructure methodology is proposed to analyze the viaduct-pile foundation-soil dynamic interaction under train loads.Thetrain-viaductsubsystemissolvedusingthe dynamic stiffness integration method,and its accuracy is verified by the existing analytical solution for a moving vehicle on a simply supported beam.For the pile foundation-soil subsystem,the geometric and material properties of piles and soils are assumed to be invariable along the azimuth direction.By introducing the equivalent stiffness of grouped piles,the governing equations of pile foundation-soil interaction are simplified based on Fourier decomposition method,so the three-dimensional problem is decomposedintoseveraltwo-dimensionalaxisymmetricfinite element models.The pile foundation-soil interaction model is verified by field measurements due to shaker loading at pile foundation top.In addition,these two substructures are coupled with the displacement compatibility condition at interface of pier bottom and pile foundation top.Finally,the proposed train-viaduct-pile foundation-soil interaction model was validated by field tests.The results show that the proposed model can predict vibrations of pile foundation and soil accurately,thereby providing a basis for the prediction of pile-soil foundation settlement.The frequency spectra of the vibration in Beijing-Tianjin high-speed railway demonstrated that the main frequencies of the pier top and ground surface are below 100 and 30 Hz,respectively.
基金Shandong Provincial Education Department Fund (No.J09LE05)
文摘Based on Zeevaert's method, a theoretical formula was developed to calculate the negative skin friction of pile in layered soil. For practical purpose,a cut-and-try method was proposed to determine neutral point. Case studies indicate that the total calculated negative skin friction was in agreement with the measured one, which verifies the feasibility and practicability of theoretical formula. Furthermore, the methods for calculating efficiency factor of drag load and settlement were also given.
文摘A series of triaxial compression tests were arried out by means of composite-reinforced soil samples to simulate the interaction between soil and pile. The samples are made of gravel or lime-soil with different length at the center. The experiment indicates that the strength of the composite samples can not be obtained by superimposure of reinforcing pile and soil simply according to their replacement proportion. It also indicates the law for stress ratio of reinforcing column to soil. The stress ratio of reinforcing column to soil increases and reaches peak rapidly while load and strain is small. Then the ratio decreases. This law is in accordance with the measuring resuits in construction site.