With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to inte...With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.展开更多
In this paper, we investigate the downlink performance of cell-free massive multi-input multi-output non-orthogonal multiple access(CF-m MIMO-NOMA) system with conjugate beamforming precoder and compare against the or...In this paper, we investigate the downlink performance of cell-free massive multi-input multi-output non-orthogonal multiple access(CF-m MIMO-NOMA) system with conjugate beamforming precoder and compare against the orthogonal multiple access(OMA) counterpart. A novel achievable closed-form spectral efficiency(SE) expression is derived, which characterizes the effects of the channel estimation error, pilot contamination, imperfect successive interference cancellation(SIC) operation, and power optimization technique. Then, motivated by the closedform result, a sum-SE maximization algorithm with the sequential convex approximation(SCA) is proposed, subject to each AP power constraint and SIC power constraint. Numerical experiments indicate that the proposed sum-SE maximization algorithms have a fast converge rate, within about five iterations. In addition, compared with the full power control(FPC) scheme, our algorithms can significantly improve the achievable sum-SE. Moreover, NOMA outperforms OMA in many respects in the presence of the proposed algorithms.展开更多
The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is o...The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is one million devices per square kilometer.These requirements are difficult to be satisfied with orthogonal multiple access(OMA) schemes.Non-orthogonal multiple access(NOMA) has thus been proposed as a promising candidate to address some of the challenges for 5G.In this paper,a comprehensive survey of different candidate NOMA schemes for 5G is presented,where the usage scenarios of5 G and the application requirements for NOMA are firstly discussed.A general framework of NOMA scheme is established and the features of typical NOMA schemes are analyzed and compared.We focus on the recent progress and challenge of NOMA in standardization of international telecommunication union(ITU),and 3rd generation partnership project(3GPP).In addition,prototype development and future research directions are also provided respectively.展开更多
Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with t...Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica-tion is featured by a new multiple access scheme from 1G to 4G. In this article we review se...Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica-tion is featured by a new multiple access scheme from 1G to 4G. In this article we review several non-orthogonal multiple access schemes for 5G. Their principles, advantages and disadvantages are discussed, and followed by a comprehensive comparison of these solutions from the perspective of user overload, receiver type, receiver complexity and so on. We also discuss the applica-tion challenges of non-orthogonal multiple access schemes in 5G.展开更多
Non-orthogonal multiple access(NOMA)is deemed to have a superior spectral efficiency and polar codes have became the channel coding scheme for control channel of enhanced mobile broadband(eMBB)in the fifth generation(...Non-orthogonal multiple access(NOMA)is deemed to have a superior spectral efficiency and polar codes have became the channel coding scheme for control channel of enhanced mobile broadband(eMBB)in the fifth generation(5G)communication systems.In this paper,NOMA combined with polar codes is used to achieve secure transmission.Both degraded wiretap channel and non-degraded wiretap channel are considered,where an eavesdropper intercepts the communication between base station(BS)and users.For the degraded wiretap channel scenario,a secure polar encoding scheme is proposed in NOMA systems with power allocation to achieve the maximum secrecy capacity.With regard to the nondegraded wiretap channel,a polar encoding scheme with multiple-input-single-output(MISO)system is proposed,where artificial noise is generated at BS to confuse the eavesdropper’s channel via transmit beamforming.The security and the secure rate are employed respectively in order to measure the secrecy performance.We prove that the proposed schemes for each scenario can achieve the secure rate and can transmit the signal securely and reliably.The simulation results show that the eavesdropper hardly decoding the secure signal when the legitimate receiver can decode the signal with very low block error rate(BLER).展开更多
Multiple access(MA) technology is of most importance for 5G. Non-orthogonal multiple access(NOMA) utilizing power domain and advanced receiver has been considered as a promising candidate MA technology recently. In th...Multiple access(MA) technology is of most importance for 5G. Non-orthogonal multiple access(NOMA) utilizing power domain and advanced receiver has been considered as a promising candidate MA technology recently. In this paper, the NOMA concept is presented toward future enhancements of spectrum efficiency in lower frequency bands for downlink of 5G system. Key component technologies of NOMA are presented and discussed including multiuser transmission power allocation, scheduling algorithm, receiver design and combination of NOMA with multi-antenna technology. The performance gains of NOMA are evaluated by system-level simulations with very practical assumptions. Under multiple configurations and setups, the achievable system-level gains of NOMA are shown promising even when practical considerations were taken into account.展开更多
Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potent...Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.展开更多
Non-orthogonal multiple access(NOMA) is considered as one of promising radio access techniques for visible light communications(VLC) in next-generation wireless communications systems.In order to provide theoretical s...Non-orthogonal multiple access(NOMA) is considered as one of promising radio access techniques for visible light communications(VLC) in next-generation wireless communications systems.In order to provide theoretical support for designing VLC-NOMA,we derive its analytic expressions for the symbol error rate(SER).Specifically,NOMA is first incorporated with appropriate VLC to establish a VLC-NOMA framework.Afterwards,mathematical expressions of the SER for the VLC-NOMA are developed.Moreover,numerical results are provided carefully to demonstrate that the proposed VLC-NOMA scheme outperforms than state-of-the-art orthogonal frequency division multiple access(OFDMA) one in terms of SER performance.Finally,relationships between the SER performance and the number of users,power allocation coefficient and semi-angle are well investigated,which can give us a scientific guide to devise the VLC-NOMA system for achieving better SER performance.展开更多
In this paper,the concept of grantfree non-orthogonal multiple access(NOMA) for uplink data transmission is elaborated.NOMA in combination with grant-free can be applied to ultra reliability low latency communication(...In this paper,the concept of grantfree non-orthogonal multiple access(NOMA) for uplink data transmission is elaborated.NOMA in combination with grant-free can be applied to ultra reliability low latency communication(URLLC),massive machine type communication(m MTC),enhanced mobile broadband(e MBB) small packet and two-step random-access channel(RACH) scenarios.The advantages of grant-free NOMA are low latency and signaling overhead,high access capability and efficient resource utilization.Candidate uplink NOMA schemes are summarized and preliminary comparison among a subset of schemes are presented.Furthermore,design aspects for grant-free NOMA are discussed,with special notes on particular issues such as blind UE identification and transmitter/receiver(Tx/Rx) impairments in realistic deployment.展开更多
The spectral efficiency(SE)and energy efficiency(EE)tradeoff while ensuring rate fairness among users in non-orthogonal multiple access(NOMA)systems is investigated.In order to characterize the SE-EE tradeoff with rat...The spectral efficiency(SE)and energy efficiency(EE)tradeoff while ensuring rate fairness among users in non-orthogonal multiple access(NOMA)systems is investigated.In order to characterize the SE-EE tradeoff with rate fairness,a multi-objective optimization(MOO)problem is first formulated,where the rate fairness is represented with theα-fair utility function.Then,the MOO problem is converted into a single-objective optimization(SOO)problem by the weighted sum method.To solve the converted non-convex SOO problem,we apply sequential convex programming,which helps to propose a general power allocation algorithm to realize the SE-EE tradeoff with rate fairness.We prove the convergence of the proposed algorithm and the convergent solution satisfies the KKT conditions.Simulation results demonstrate the proposed power allocation algorithm can achieve various levels of rate fairness,and higher fairness results in degraded performance of SE-EE tradeoff.A pivotal conclusion is reached that NOMA systems significantly outperform orthogonal multiple access systems in terms of SE-EE tradeoff with the same level of rate fairness.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical s...In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.展开更多
Non-orthogonal multiple access (NOMA) schemes have achieved great attention recently and been considered as a crucial compo-nent for 5G wireless networks since they can efficiently enhance the spectrum efficiency, s...Non-orthogonal multiple access (NOMA) schemes have achieved great attention recently and been considered as a crucial compo-nent for 5G wireless networks since they can efficiently enhance the spectrum efficiency, support massive connections and poten-tially reduce access latency via grant free access. In this paper, we introduce the candidate NOMA solutions in 5G networks, com-paring the principles, key features, application scenarios, transmitters and receivers, etc. In addition, a unified framework of these multiple access schemes are proposed to improve resource utilization, reduce the cost and support the flexible adaptation of multi-ple access schemes. Further, flexible multiple access schemes in 5G systems are discussed. They can support diverse deployment scenarios and traffic requirements in 5G. Challenges and future research directions are also highlighted to shed some lights for the standardization in 5G.展开更多
In non-orthogonal multiple access(NMA) system, signal transmitter and receiver are jointly optimized, so that multiple layers ofdata from more than one user can be simultaneously delivered in the same resource. To mee...In non-orthogonal multiple access(NMA) system, signal transmitter and receiver are jointly optimized, so that multiple layers ofdata from more than one user can be simultaneously delivered in the same resource. To meet the 5G requirements on the numberof connections and spectral efficiency, uplink NMA is becoming an important candidate technology and has been extensively stud-ied in 3GPP. A number of uplink NMA schemes from different industrial companies have been proposed in recent 3GPP meet-ings. In terms of their basic technique principles, this paper classifies these NMA schemes into three categories, namely: scram-bling based NMA schemes, interleaving based NMA schemes, and spreading based NMA schemes. Moreover, the key characteris-tics of these schemes are summarized, and the detailed introduction of each scheme is provided according to the comprehensivesurvey of the latest progress in 3GPP 5G standardization work.展开更多
In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connectio...In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connection requests and huge traffic load from all kinds of smart devices,e.g.bike,watch,phone,ring,glasses,shoes,etc..To solve this hard problem in distributed scenarios with massive competing devices,this paper proposes and evaluates a Neighbor-Aware Multiple Access(NAMA) protocol,which is scalable and adaptive to different connectivity size and traffic load.By exploiting acknowledgement signals broadcasted from the neighboring devices with successful packet transmissions,NAMA is able to turn itself from a contention-based random access protocol to become a contention-free deterministic access protocol with particular transmission schedules for all neighboring devices after a short transition period.The performance of NAMA is fully evaluated from random state to deterministic state through extensive computer simulations under different network sizes and Contention Window(CW)settings.Compared with traditional IEEE802.11 Distributed Coordination Function(DCF),for a crowded network with 50 devices,NAMA can greatly improve system throughput and energy efficiency by more than 110%and210%,respectively,while reducing average access delay by 53%in the deterministic state.展开更多
Unsourced multiple access(UMA)is a multi-access technology for massive,low-power,uncoordinated,and unsourced Machine Type Communication(MTC)networks.It ensures transmission reliability under the premise of high energy...Unsourced multiple access(UMA)is a multi-access technology for massive,low-power,uncoordinated,and unsourced Machine Type Communication(MTC)networks.It ensures transmission reliability under the premise of high energy efficiency.Based on the analysis of the 6G MTC key performance indicators(KPIs)and scenario characteristics,this paper summarizes its requirements for radio access networks.Following this,the existing multiple access models are analyzed under these standards to determine UMA's advantages for 6G MTC according to its design characteristics.The critical technology of UMA is the design of its multiple-access coding scheme.Therefore,the existing UMA coding schemes from different coding paradigms are further summarized and compared.In particular,this paper comprehensively considers the energy efficiency and computational complexity of these schemes,studies the changes of the above two indexes with the increase of access scale,and considers the trade-off between the two.It is revealed by the above analysis that some guiding rules of UMA coding design.Finally,the open problems and potentials in this field are given for future research.展开更多
A fiber-based,multiple access timing signal synchronization scheme is demonstrated.By coupling out the bidirectional transmission signals,a highly stable timing signal can be recovered at arbitrary points along the fi...A fiber-based,multiple access timing signal synchronization scheme is demonstrated.By coupling out the bidirectional transmission signals,a highly stable timing signal can be recovered at arbitrary points along the fiber with the help of the loop delay message broadcasted via ethernet from the local module.The experiment is carried out on a 30-km fiber placed in a temperature-controlled box.In one-day period,when the round trip fiber transfer delay fluctuation is60 ns,the fluctuations of the stabilized timing signal from the download and the remote modules were only ±125 ps and±100 ps,respectively.Also,the system error caused by transmission path asymmetry and thermal drift is calibrated,and a100-ps magnitude synchronization accuracy is realized.This method could provide new insights into the construction of a fiber-based time transfer network.展开更多
In recent years,LoRa has been extensively researched in the satellite Internet of Things(IoT).However,the multiple access technology of LoRa is still one of the bottlenecks of satellite IoT.To improve the multiple acc...In recent years,LoRa has been extensively researched in the satellite Internet of Things(IoT).However,the multiple access technology of LoRa is still one of the bottlenecks of satellite IoT.To improve the multiple access performance of LoRa satellite IoT,based on the orthogonality of LoRa symbols in the fractional domain,this paper proposes a low complexity Orthogonal LoRa Multiple Access(OLMA)algorithm for multiple LoRa users occupying the same frequency bandwidth.The algorithm introduces the address code to divide the fractional bandwidth into multiple parts,and the OLMA users with different address codes occupy different parts to transmit the information code,thus avoiding mutual interference caused by collisions in the same frequency bandwidth.The multiple access capability of OLMA can be flexibly configured only by simply adjusting the length of the address code according to the actual application requirements of data transmission.Theoretical analysis and simulation results show that the OLMA algorithm can greatly improve the multiple access capability and the total transmission bit rate of LoRa IoT without changing the existing LoRa modulation parameters and process.展开更多
基金supported in part by the National Natural Science Foundation of China (No. 91638205, 91438206, 61771286, 61621091)
文摘With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFC1314903the National Natural Science Foundation of China under Grants 61861039,61372124,and 61427801+1 种基金the Science and Technology Project Foundation of Gansu Province under Grant 18YF1GA060the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant SJKY19_0740 and KYCX20_0709。
文摘In this paper, we investigate the downlink performance of cell-free massive multi-input multi-output non-orthogonal multiple access(CF-m MIMO-NOMA) system with conjugate beamforming precoder and compare against the orthogonal multiple access(OMA) counterpart. A novel achievable closed-form spectral efficiency(SE) expression is derived, which characterizes the effects of the channel estimation error, pilot contamination, imperfect successive interference cancellation(SIC) operation, and power optimization technique. Then, motivated by the closedform result, a sum-SE maximization algorithm with the sequential convex approximation(SCA) is proposed, subject to each AP power constraint and SIC power constraint. Numerical experiments indicate that the proposed sum-SE maximization algorithms have a fast converge rate, within about five iterations. In addition, compared with the full power control(FPC) scheme, our algorithms can significantly improve the achievable sum-SE. Moreover, NOMA outperforms OMA in many respects in the presence of the proposed algorithms.
基金supported by the National High Technology Research and Development Program of China (863 Program, No. 2015AA01A709)
文摘The major challenge faced by the fifth generation(5G) mobile network is higher spectral efficiency and massive connectivity,i.e.,the target spectrum efficiency is 3 times over 4G,and the target connection density is one million devices per square kilometer.These requirements are difficult to be satisfied with orthogonal multiple access(OMA) schemes.Non-orthogonal multiple access(NOMA) has thus been proposed as a promising candidate to address some of the challenges for 5G.In this paper,a comprehensive survey of different candidate NOMA schemes for 5G is presented,where the usage scenarios of5 G and the application requirements for NOMA are firstly discussed.A general framework of NOMA scheme is established and the features of typical NOMA schemes are analyzed and compared.We focus on the recent progress and challenge of NOMA in standardization of international telecommunication union(ITU),and 3rd generation partnership project(3GPP).In addition,prototype development and future research directions are also provided respectively.
文摘Non-orthogonal multiple access (NOMA) has been recognized as a promising multiple access technique for the next generation cel-lular communication networks. In this paper, we first discuss a simple NOMA model with two users served by a single-carrier si-multaneously to illustrate its basic principles. Then, a more general model with multicarrier serving an arbitrary number of users on each subcarrier is also discussed. An overview of existing works on performance analysis, resource allocation, and multiple-in-put multiple-output NOMA are summarized and discussed. Furthermore, we discuss the key features of NOMA and its potential re-search challenges.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
文摘Multiple access scheme is one of the key techniques in wireless communication systems. Each generation of wireless communica-tion is featured by a new multiple access scheme from 1G to 4G. In this article we review several non-orthogonal multiple access schemes for 5G. Their principles, advantages and disadvantages are discussed, and followed by a comprehensive comparison of these solutions from the perspective of user overload, receiver type, receiver complexity and so on. We also discuss the applica-tion challenges of non-orthogonal multiple access schemes in 5G.
基金Science Foundation of China under Grant No.61871032in part by the Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant 20KJB510036the Guangxi Key Laboratory of Multimedia Communications and Network Technology under Grant KLF-2020-03。
文摘Non-orthogonal multiple access(NOMA)is deemed to have a superior spectral efficiency and polar codes have became the channel coding scheme for control channel of enhanced mobile broadband(eMBB)in the fifth generation(5G)communication systems.In this paper,NOMA combined with polar codes is used to achieve secure transmission.Both degraded wiretap channel and non-degraded wiretap channel are considered,where an eavesdropper intercepts the communication between base station(BS)and users.For the degraded wiretap channel scenario,a secure polar encoding scheme is proposed in NOMA systems with power allocation to achieve the maximum secrecy capacity.With regard to the nondegraded wiretap channel,a polar encoding scheme with multiple-input-single-output(MISO)system is proposed,where artificial noise is generated at BS to confuse the eavesdropper’s channel via transmit beamforming.The security and the secure rate are employed respectively in order to measure the secrecy performance.We prove that the proposed schemes for each scenario can achieve the secure rate and can transmit the signal securely and reliably.The simulation results show that the eavesdropper hardly decoding the secure signal when the legitimate receiver can decode the signal with very low block error rate(BLER).
文摘Multiple access(MA) technology is of most importance for 5G. Non-orthogonal multiple access(NOMA) utilizing power domain and advanced receiver has been considered as a promising candidate MA technology recently. In this paper, the NOMA concept is presented toward future enhancements of spectrum efficiency in lower frequency bands for downlink of 5G system. Key component technologies of NOMA are presented and discussed including multiuser transmission power allocation, scheduling algorithm, receiver design and combination of NOMA with multi-antenna technology. The performance gains of NOMA are evaluated by system-level simulations with very practical assumptions. Under multiple configurations and setups, the achievable system-level gains of NOMA are shown promising even when practical considerations were taken into account.
文摘Recently,the increasing demand of radio spectrum for the next generation communication systems due to the explosive growth of applications appetite for bandwidths has led to the problem of spectrum scarcity.The potential approaches among the proposed solutions to resolve this issue are well explored cognitive radio(CR)technology and recently introduced non-orthogonal multiple access(NOMA)techniques.Both the techniques are employed for efficient spectrum utilization and assure the significant improvement in the spectral efficiency.Further,the significant improvement in spectral efficiency can be achieved by combining both the techniques.Since the CR is well-explored technique as compared to that of the NOMA in the field of communication,therefore it is worth and wise to implement this technique over the CR.In this article,we have presented the frameworks of NOMA implementation over CR as well as the feasibility of proposed frameworks.Further,the differences between proposed CR-NOMA and conventional CR frameworks are discussed.Finally,the potential issues regarding the implementation of CR-NOMA are explored.
基金supported by National Natural Science Foundation of China grants(No.61401069,No.61271240,No.61501254)Jiangsu Specially Appointed Professor Grant(RK002STP16001)+2 种基金Innovation and Entrepreneurship of Jiangsu High-level Talent Grant(CZ0010617002)High-level talent startup grant of Nanjing University of Posts and Telecommunications(XK0010915026)“1311 Talent Plan” of Nanjing University of Posts and Telecommunications
文摘Non-orthogonal multiple access(NOMA) is considered as one of promising radio access techniques for visible light communications(VLC) in next-generation wireless communications systems.In order to provide theoretical support for designing VLC-NOMA,we derive its analytic expressions for the symbol error rate(SER).Specifically,NOMA is first incorporated with appropriate VLC to establish a VLC-NOMA framework.Afterwards,mathematical expressions of the SER for the VLC-NOMA are developed.Moreover,numerical results are provided carefully to demonstrate that the proposed VLC-NOMA scheme outperforms than state-of-the-art orthogonal frequency division multiple access(OFDMA) one in terms of SER performance.Finally,relationships between the SER performance and the number of users,power allocation coefficient and semi-angle are well investigated,which can give us a scientific guide to devise the VLC-NOMA system for achieving better SER performance.
文摘In this paper,the concept of grantfree non-orthogonal multiple access(NOMA) for uplink data transmission is elaborated.NOMA in combination with grant-free can be applied to ultra reliability low latency communication(URLLC),massive machine type communication(m MTC),enhanced mobile broadband(e MBB) small packet and two-step random-access channel(RACH) scenarios.The advantages of grant-free NOMA are low latency and signaling overhead,high access capability and efficient resource utilization.Candidate uplink NOMA schemes are summarized and preliminary comparison among a subset of schemes are presented.Furthermore,design aspects for grant-free NOMA are discussed,with special notes on particular issues such as blind UE identification and transmitter/receiver(Tx/Rx) impairments in realistic deployment.
基金Supported by the Fundamental Research Funds for the Central Universities(2016RC055)
文摘The spectral efficiency(SE)and energy efficiency(EE)tradeoff while ensuring rate fairness among users in non-orthogonal multiple access(NOMA)systems is investigated.In order to characterize the SE-EE tradeoff with rate fairness,a multi-objective optimization(MOO)problem is first formulated,where the rate fairness is represented with theα-fair utility function.Then,the MOO problem is converted into a single-objective optimization(SOO)problem by the weighted sum method.To solve the converted non-convex SOO problem,we apply sequential convex programming,which helps to propose a general power allocation algorithm to realize the SE-EE tradeoff with rate fairness.We prove the convergence of the proposed algorithm and the convergent solution satisfies the KKT conditions.Simulation results demonstrate the proposed power allocation algorithm can achieve various levels of rate fairness,and higher fairness results in degraded performance of SE-EE tradeoff.A pivotal conclusion is reached that NOMA systems significantly outperform orthogonal multiple access systems in terms of SE-EE tradeoff with the same level of rate fairness.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
文摘In this paper,ambient IoT is used as a typical use case of massive connections for the sixth generation(6G)mobile communications where we derive the performance requirements to facilitate the evaluation of technical solutions.A rather complete design of unsourced multiple access is proposed in which two key parts:a compressed sensing module for active user detection,and a sparse interleaver-division multiple access(SIDMA)module are simulated side by side on a same platform at balanced signal to noise ratio(SNR)operating points.With a proper combination of compressed sensing matrix,a convolutional encoder,receiver algorithms,the simulated performance results appear superior to the state-of-the-art benchmark,yet with relatively less complicated processing.
文摘Non-orthogonal multiple access (NOMA) schemes have achieved great attention recently and been considered as a crucial compo-nent for 5G wireless networks since they can efficiently enhance the spectrum efficiency, support massive connections and poten-tially reduce access latency via grant free access. In this paper, we introduce the candidate NOMA solutions in 5G networks, com-paring the principles, key features, application scenarios, transmitters and receivers, etc. In addition, a unified framework of these multiple access schemes are proposed to improve resource utilization, reduce the cost and support the flexible adaptation of multi-ple access schemes. Further, flexible multiple access schemes in 5G systems are discussed. They can support diverse deployment scenarios and traffic requirements in 5G. Challenges and future research directions are also highlighted to shed some lights for the standardization in 5G.
文摘In non-orthogonal multiple access(NMA) system, signal transmitter and receiver are jointly optimized, so that multiple layers ofdata from more than one user can be simultaneously delivered in the same resource. To meet the 5G requirements on the numberof connections and spectral efficiency, uplink NMA is becoming an important candidate technology and has been extensively stud-ied in 3GPP. A number of uplink NMA schemes from different industrial companies have been proposed in recent 3GPP meet-ings. In terms of their basic technique principles, this paper classifies these NMA schemes into three categories, namely: scram-bling based NMA schemes, interleaving based NMA schemes, and spreading based NMA schemes. Moreover, the key characteris-tics of these schemes are summarized, and the detailed introduction of each scheme is provided according to the comprehensivesurvey of the latest progress in 3GPP 5G standardization work.
基金funded by the National Natural Science Foundation of China (Grant No.61231009)the National HighTech R&D Program of China(863)(Grant No.2014AA01A701)+5 种基金the National Science and Technology Major Project(Grant No. 2015ZX03001033-003)Ministry of Science and Technology International Cooperation Project(Grant No.2014DFE10160)the Science and Technology Commission of Shanghai Municipality(Grant No.14ZR1439600)the EU H2020 5G Wireless project(Grant No.641985)the EU FP7 QUICK project(Grant No. PIRSES-GA-2013-612652)the EPSRC TOUCAN project(Grant No.EP/L020009/1)
文摘In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connection requests and huge traffic load from all kinds of smart devices,e.g.bike,watch,phone,ring,glasses,shoes,etc..To solve this hard problem in distributed scenarios with massive competing devices,this paper proposes and evaluates a Neighbor-Aware Multiple Access(NAMA) protocol,which is scalable and adaptive to different connectivity size and traffic load.By exploiting acknowledgement signals broadcasted from the neighboring devices with successful packet transmissions,NAMA is able to turn itself from a contention-based random access protocol to become a contention-free deterministic access protocol with particular transmission schedules for all neighboring devices after a short transition period.The performance of NAMA is fully evaluated from random state to deterministic state through extensive computer simulations under different network sizes and Contention Window(CW)settings.Compared with traditional IEEE802.11 Distributed Coordination Function(DCF),for a crowded network with 50 devices,NAMA can greatly improve system throughput and energy efficiency by more than 110%and210%,respectively,while reducing average access delay by 53%in the deterministic state.
基金supported by National Natural Science Foundation of China under Grant 61971062,Grant 92067202,Grant 62071058,Grant 62001049Beijing Natural Science Foundation under Grant 4222012Beijing University of Posts and Telecommunications China Mobile Research Institute Joint Innovation Center。
文摘Unsourced multiple access(UMA)is a multi-access technology for massive,low-power,uncoordinated,and unsourced Machine Type Communication(MTC)networks.It ensures transmission reliability under the premise of high energy efficiency.Based on the analysis of the 6G MTC key performance indicators(KPIs)and scenario characteristics,this paper summarizes its requirements for radio access networks.Following this,the existing multiple access models are analyzed under these standards to determine UMA's advantages for 6G MTC according to its design characteristics.The critical technology of UMA is the design of its multiple-access coding scheme.Therefore,the existing UMA coding schemes from different coding paradigms are further summarized and compared.In particular,this paper comprehensively considers the energy efficiency and computational complexity of these schemes,studies the changes of the above two indexes with the increase of access scale,and considers the trade-off between the two.It is revealed by the above analysis that some guiding rules of UMA coding design.Finally,the open problems and potentials in this field are given for future research.
基金Project supported by the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ09094303)the Program of International Science and Technology Cooperation(Grant No.2016YFE0100200)
文摘A fiber-based,multiple access timing signal synchronization scheme is demonstrated.By coupling out the bidirectional transmission signals,a highly stable timing signal can be recovered at arbitrary points along the fiber with the help of the loop delay message broadcasted via ethernet from the local module.The experiment is carried out on a 30-km fiber placed in a temperature-controlled box.In one-day period,when the round trip fiber transfer delay fluctuation is60 ns,the fluctuations of the stabilized timing signal from the download and the remote modules were only ±125 ps and±100 ps,respectively.Also,the system error caused by transmission path asymmetry and thermal drift is calibrated,and a100-ps magnitude synchronization accuracy is realized.This method could provide new insights into the construction of a fiber-based time transfer network.
基金supported in part by the National Natural Science Foundation of China under Grant 61871153in part by Science and Technology on Communication Networks Laboratory under Grant 6142104200202in part by Science and Technology Project of Ministry of Public Security(2019GABJC35)。
文摘In recent years,LoRa has been extensively researched in the satellite Internet of Things(IoT).However,the multiple access technology of LoRa is still one of the bottlenecks of satellite IoT.To improve the multiple access performance of LoRa satellite IoT,based on the orthogonality of LoRa symbols in the fractional domain,this paper proposes a low complexity Orthogonal LoRa Multiple Access(OLMA)algorithm for multiple LoRa users occupying the same frequency bandwidth.The algorithm introduces the address code to divide the fractional bandwidth into multiple parts,and the OLMA users with different address codes occupy different parts to transmit the information code,thus avoiding mutual interference caused by collisions in the same frequency bandwidth.The multiple access capability of OLMA can be flexibly configured only by simply adjusting the length of the address code according to the actual application requirements of data transmission.Theoretical analysis and simulation results show that the OLMA algorithm can greatly improve the multiple access capability and the total transmission bit rate of LoRa IoT without changing the existing LoRa modulation parameters and process.