期刊文献+
共找到22,697篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress of catalysts for synthesis of glycerol carbonate form glycerol and urea
1
作者 WANG Yuhua LI Hongguang +3 位作者 DING Liang KOU Yongli QI Wenbo ZHAO Ning 《燃料化学学报(中英文)》 北大核心 2025年第6期964-982,共19页
Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the perform... Transformation of urea and glycerol to glycerol carbonate is an environmental friendly and economical process.Catalysts play an indispensable role in the process.Although many catalysts have been developed,the performance of the catalysts still cannot meet the needs of industrialization.In this paper,research progress of the homogeneous and heterogeneous catalysts of the reaction over the past 20 years were reviewed systematically.According to the types and active centers of catalysts,the catalysts were classified systematically and analyzed in detail.The typical reaction mechanisms were also summarized.The research and development direction of catalysts is made more explicit through systematic classification and mechanism analysis.The article reveals more novel catalysts have been designed and used for the reaction,such as mixed metal oxides with special structures,solid wastes and non-metallic materials.This work summarized the current state of research and prospected possible routes for design of novel catalysts.It is hoped that this review can provide some references for developing efficient catalysts. 展开更多
关键词 glycerol carbonate GLYCEROL UREA catalysts
在线阅读 下载PDF
Roles of Sn-promoter and carbon nanotubes treatment on supported CoB catalysts for hydrogen production
2
作者 SHI Limin LI Yanbo +2 位作者 LEI Qiang REN Rongzhi WANG Yujing 《燃料化学学报(中英文)》 北大核心 2025年第5期703-712,共10页
Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discu... Carbon nanotubes(CNTs)supported CoB and CoBSn catalysts were synthesized for hydrogen production via NaBH4 hydrolysis.The roles of Sn-promoter and the effect of CNTs treatment on CoB catalysts were evaluated and discussed.It is found that after the addition of Sn promoter,the specific surface area and the generation of active CoB phase are increased,while the oxidation treatment of CNTs results in more loading amounts of active components and enrichment of electron at active sites as well as large surface area.Consequently,the Sn-doped CoB catalysts supported on CNTs with oxidation treatment exhibits a significantly improved activity with a high H_(2)generation rate of 2640 mL/(min·g).Meanwhile,this catalyst shows a low activation energy of 43.7 kJ/mol and relatively high reusability. 展开更多
关键词 sodium borohydride hydrolysis CoB-based catalysts Sn promoter carbon nanotubes oxidation treatment
在线阅读 下载PDF
Strong electronic metal-support interactions for enhanced hydroformylation activity and stability over Rh single-atom catalysts through phosphorus doping
3
作者 Boyang Fu Ping Ma +11 位作者 Xiaoyang Ding Kaifu Cai Limin Sun Yujin Zhu Qiwei Yin Yihao Sun Tianle Liu Yuzhen Li Yuxing Xu Jian Gu Haowen Ma Junling Lu 《中国科学技术大学学报》 北大核心 2025年第3期2-10,1,I0001,共11页
By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts d... By simplifying catalyst-product separation and reducing phosphorus waste,heterogeneous hydroformylation offers a more sustainable alternative to homogeneous processes.However,heterogeneous hydroformylation catalysts developed thus far still suffer from the issues of much lower activity and metal leaching,which severely hinder their practical application.Here,we demonstrate that incorporating phosphorus(P)atoms into graphitic carbon nitride(PCN)supports facilitates charge transfer from Rh to the PCN support,thus largely enhancing electronic metal-support interactions(EMSIs).In the styrene hydroformylation reaction,the activity of Rh_(1)/PCN single-atom catalysts(SACs)with varying P contents exhibited a volcano-shaped relationship with P doping,where the Rh_(1)/PCN SAC with optimal P doping showed exceptional activity,approximately 5.8-and 3.3-fold greater than that of the Rh_(1)/g-C_(3)N_(4)SAC without P doping and the industrial homogeneous catalyst HRh(CO)(PPh_(3))_(3),respectively.In addition,the optimal Rh_(1)/PCN SAC catalyst also demonstrated largely enhanced multicycle stability without any visible metal aggregation owing to the increased EMSIs,which sharply differed from the severe metal aggregation of large nanoparticles on the Rh_(1)/g-C_(3)N_(4)SAC.Mechan-istic studies revealed that the enhanced catalytic performance could be attributed to electron-deficient Rh species,which reduced CO adsorption while simultaneously promoting alkene adsorption through increased EMSIs.These findings suggest that tuning EMSIs is an effective way to achieve SACs with high activity and durability. 展开更多
关键词 heterogeneous hydroformylation Rh single-atom catalysts electronic metal-support interactions phosphorus doping
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
4
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
Corrigendum to“Mechanistic Insights into Water-Mediated CO_(2)Electrochemical Reduction Reactions on Cu@C_(2)N Catalysts:A Theoretical Study”[Acta Physico-Chimica Sinica(2024)40,2303040]
5
《物理化学学报》 北大核心 2025年第5期144-144,共1页
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers... Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China. 展开更多
关键词 chemical engineeringdalian theoretical study water mediated Cu C N catalysts fine chemicalsschool CO electrochemical reduction chemical engineeringstate
在线阅读 下载PDF
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction
6
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming Ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
Biomass-derived N-doped porous carbon supported single Fe atoms as low-cost and high-performance electrocatalysts for oxygen reduction reaction
7
作者 WANG Li-ping XIAO Jin +1 位作者 MAO Qiu-yun ZHONG Qi-fan 《Journal of Central South University》 2025年第4期1368-1383,共16页
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp... Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost. 展开更多
关键词 oxygen reduction reaction single-atom catalyst porous carbon MICROPORE biomass
在线阅读 下载PDF
Series Reports from Professor Wei's Group of Chongqing University:Advancements in Electrochemical Energy Conversions(1/4):Report 1:High-performance Oxygen Reduction Catalysts for Fuel Cells 被引量:1
8
作者 Fa-Dong Chen Zhuo-Yang Xie +5 位作者 Meng-Ting Li Si-Guo Chen Wei Ding Li Li Jing Li Zi-Dong Wei 《电化学(中英文)》 CAS 北大核心 2024年第7期1-27,共27页
Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo... Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts. 展开更多
关键词 Fuel cell Oxygen reduction reaction Pt-based catalyst Carbon-based catalyst
在线阅读 下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
9
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants Heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
在线阅读 下载PDF
Cu-based heterojunction catalysts for electrocatalytic nitrate reduction to ammonia
10
作者 HUANG Yitao GUAN Minghao +4 位作者 PEI Jiyuan SONG Yongyi WU Tao HOU Shuandi LU Anhui 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第12期1857-1864,I0008-I0010,共11页
Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they ... Copper-based catalysts have garnered wide attention in the field of electrocatalytic nitrate reduction for ammonia production due to their low hydrogen precipitation activity and high ammonia selectivity.However,they still face challenges pertaining of poor stability and low activity,which hinder their further application.Herein,we present a Cu_(2)O/Cu heterojunction catalyst supported on nitrogen-doped porous carbon for nitrate reduction.High resolution transmission electron microscopy(HRTEM)and X-ray Diffraction(XRD)results confirm the presence of Cu_(2)O/Cu heterojunctions,which serve as an active phase in catalysis.The nitrogen-doped porous carbon as a carrier not only enhances the catalyst’s stability,but also facilitates the exposure and dispersion of active sites.At-1.29 V(vs.RHE),the maximum production rate of ammonia reaches 8.8 mg/(mg·h)with a Faradaic efficiency of 92.8%.This study also elucidates the effect of Cu_(2)O-to-Cu ratio in the heterojunction on catalytic performance,thereby providing valuable insights for designing efficient nitrate reduction catalysts for ammonia production. 展开更多
关键词 ELECTROCATALYSIS nitrate reduction AMMONIA copper-based catalysts
在线阅读 下载PDF
Strategies for addressing inability to retrieve piezocatalysts and pyrocatalysts
11
作者 FENG Kai-yu ZHANG Yan +5 位作者 GONG Han-yu HE Yi-meng SHEN Shu-yi ZHAO Yan ZHOU Xiang ZHANG Dou 《Journal of Central South University》 CSCD 2024年第12期4654-4678,共25页
Piezocatalysis and pyrocatalysis can achieve catalytic action with the application of external mechanical energy and varying temperatures.These catalytic processes have been widely applied in various fields,providing ... Piezocatalysis and pyrocatalysis can achieve catalytic action with the application of external mechanical energy and varying temperatures.These catalytic processes have been widely applied in various fields,providing innovative solutions to issues such as water pollution,energy shortages,and global warming.Despite the continuous breakthroughs in the catalytic performance of piezocatalysts and pyrocatalysts,powder-based catalysts face significant limitations due to their inability to be retrieved and the risk of secondary pollution,severely restricting their application.Methods such as compression molding,3 D printing,and the preparation of ceramic-polymer bulk composites can effectively address the issue of catalyst retrievability.However,bulk catalysts,which lose a significant amount of surface area,still need their catalytic performance further enhanced.Therefore,achieving piezocatalysts and pyrocatalysts with excellent catalytic performance and retrievability is of increasing importance. 展开更多
关键词 piezocatalysis pyrocatalysis retrievability power-based catalyst bulk catalyst
在线阅读 下载PDF
Designing catalysts to formic acid oxidation reaction:From nanoscale to single atoms
12
作者 GONG Jia-xin HU Shou-yao XIONG Yu 《Journal of Central South University》 CSCD 2024年第12期4586-4600,共15页
Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the... Formic acid oxidation reaction(FAOR),as the anodic reaction in direct formic acid fuel cells,has attracted much attention but increasing the mass activity and stability of catalysts still face a bottleneck to meet the requirements of practical applications.In the past decades,researchers developed many strategies to fix these issues by improving the structure of catalysts and the newly raised single atom catalysts(SACs)show the high mass activity and stability in FAOR.This review first summarized the reaction mechanism involved in FAOR.The mass activity as well as stability of catalysts reported in the past five years have been outlined.Moreover,the synthetic strategies to improve the catalytic performance of catalysts are also reviewed in this work.Finally,we proposed the research directions to guide the rational design of new FAOR catalysts in the future. 展开更多
关键词 formic acid oxidation reaction nanosized catalysts single atom catalysts synthetic strategy
在线阅读 下载PDF
The effect of the carbon components on the performance of carbonbased transition metal electrocatalysts for the hydrogen evolution reaction
13
作者 LI Guo-hua WANG Jing +6 位作者 REN Jin-tian LIU Hong-chen QIAN Jin-xiu CHENG Jia-ting ZHAO Mei-tong YANG Fan LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期946-972,共27页
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav... The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts. 展开更多
关键词 Carbon-based transition metal catalysts Heteroatom doping Morphology adjustment Self-supporting materials Hydrogen evolution reaction
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
14
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Peroxymonosulfate Activation by CoFe_(2)O_(4)/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic
15
作者 LI Jianjun CHEN Fangming +5 位作者 ZHANG Lili WANG Lei ZHANG Liting CHEN Huiwen XUE Changguo XU Liangji 《无机材料学报》 北大核心 2025年第4期440-448,I0022-I0024,共12页
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d... Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation. 展开更多
关键词 magnetic composite catalyst PEROXYMONOSULFATE CoFe_(2)O_(4)/MgAl-LDH advanced oxidation process antibiotic
在线阅读 下载PDF
Bimetallic MOF(Mn/Co)constructed by active dicyandiamide linker for a promising combustion catalyst of solid propellant
16
作者 Mingcheng Ge Xian Xu +5 位作者 Ze Su Ye Zhong Binfang Yuan Huisheng Huang Jianguo Zhang Zhimin Li 《Defence Technology(防务技术)》 2025年第8期203-212,共10页
Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was con... Combustion catalyst is a key modifier for the performance of composite solid propellant.To exploit highefficiency combustion catalyst,a fascinating bimetallic metal-organic framework[MnCo(EIM)_(2)(DCA)_(2)]n(1)was constructed by an active dicyandiamide(DCA)linker,Mn^(2+),Co^(2+)centers,and an 1-ethylimidazole(EIM)ligand.1 possesses good thermal stability(Tp=205℃),high energy density(Eg=24.34 kJ/g,Ev=35.93 kJ/cm^(3)),and insensitivity to impact and frictional stimulus.The catalytic effects of 1 contrasted to monometallic coordination compounds Mn(EIM)_(4)(DCA)_(2)(2)and Co(EIM)_(4)(DCA)_(2)(3)on the thermal decomposition of AP/RDX composite were investigated by a DSC method.The decomposition peak temperatures of AP and RDX of the composite decreased to 335.8℃ and 206.4℃,respectively,and the corresponding activation energy decreased by 27.3%and 43.6%,respectively,which are better than the performances of monometallic complexes 2 and 3.The gas products in the whole thermal decomposition stage of the sample were measured by TG-MS and TG-IR,and the catalytic mechanism of 1 to AP/RDX was further analyzed.This work reveal potential application of bimetallic MOFs in the composite solid propellants. 展开更多
关键词 Bimetallic MOF Solid propellant Combustion catalyst Thermal decomposition
在线阅读 下载PDF
CATALYSTS FOR SYNTHESIS OF N-VINYLPYRROLIDONE 被引量:15
17
作者 崔英德 易国斌 +1 位作者 廖列文 康正 《化工学报》 EI CAS CSCD 北大核心 2000年第4期443-445,共3页
关键词 N-VINYLPYRROLIDONE catalyst SYNTHESIS
在线阅读 下载PDF
Study on iron-manganese catalysts for Fischer-Tropsch synthesis 被引量:5
18
作者 MOSTAFA FEYZI FATANEH JAFARI 《燃料化学学报》 EI CAS CSCD 北大核心 2012年第5期550-557,共8页
铁锰催化剂被一起沉淀方法准备。催化剂的描述被使用 X 光衍射(XRD ) 执行,扫描电子显微镜学(SEM ) ,温度程序减小(TPR ) , N2 吸附解吸附作用大小。从 Fischer-Tropsch 合成的催化表演测试的结果证明铁锰催化剂对催化剂作文和材料... 铁锰催化剂被一起沉淀方法准备。催化剂的描述被使用 X 光衍射(XRD ) 执行,扫描电子显微镜学(SEM ) ,温度程序减小(TPR ) , N2 吸附解吸附作用大小。从 Fischer-Tropsch 合成的催化表演测试的结果证明铁锰催化剂对催化剂作文和材料来源敏感过度。当 CH4 和 CO2 由使用从铁(II ) 准备的铁锰催化剂减少了时, C24 轻石蜡增加了,这被发现当 CH4 和 CO2 由使用从铁(II ) 准备的铁锰催化剂减少了时硫酸盐(催化剂) 。催化剂的活动和选择处于不同运作的条件被学习。结果证明为 C24 轻石蜡生产的最好的运作的条件在 260 点是 H2/CO=1/1 (GHSV=2400 h1 ) 展开更多
关键词 iron-manganese catalyst catalytic performance operational conditions Fischer-Tropsch synthesis
在线阅读 下载PDF
One step NaBH_4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells : Synthe sis and characte rization 被引量:4
19
作者 Napha Sudachom Chompunuch Warakulwit +2 位作者 Chaiwat Prapainainar Thongthai Witoon Paweena Prapainainar 《燃料化学学报》 EI CAS CSCD 北大核心 2017年第5期596-607,共12页
The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succini... The ternary catalyst Pt75Ru5Ni20 was conducted on various types of carbon supports including functionalized Vulcan XC-72R(f-CB),functionalized multi-walled carbon nanotubes(f-MWCNT),and mesoporous carbon(PC-Zn-succinic)by sodium borohydride chemical reduction method to improve the ethanol electrooxidation reaction(EOR)for direct ethanol fuel cell(DEFC).It was found that the particle size of the metals on f-MWCNT was 5.20 nm with good particle dispersion.The alloy formation of ternary catalyst was confirmed by XRD and more clearly described by SEM element mapping,which was relevant to the efficiency of the catalysts.Moreover,the mechanism of ethanol electrooxidation reaction based on the surface reaction was more understanding.The activity and stability for ethanol electrooxidation reaction(EOR)were investigated using cyclic voltammetry and chronoamperometry,respectively.The highest activity and stability for EOR were observed from Pt75Ru5Ni20/f-MWCNT due to a good metal-carbon interaction.Ru and Ni presented in Pt-Ru-Ni alloy improved the activity and stability of ternary catalysts for EOR.Moreover,the reduction of Pt content in ternary catalyst led to the catalyst cost deduction in DEFC. 展开更多
关键词 ternary catalyst ethanol electrooxidation reaction multiwall carbon nanotubes mesoporous carbon
在线阅读 下载PDF
Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming 被引量:1
20
作者 Fabiola Nerina Agüero Jose Antonio Alonso +1 位作者 Maria Teresa Fernández-Díaz Luis Eduardo Cadus 《燃料化学学报》 EI CAS CSCD 北大核心 2018年第11期1332-1341,共10页
Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose,La_(1-x)Mg_xAl_(1-y)Ni_yO_3(x = 0.1; y = 0,0.1,0.2,0.3) perovs... Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose,La_(1-x)Mg_xAl_(1-y)Ni_yO_3(x = 0.1; y = 0,0.1,0.2,0.3) perovskites were synthetized by the citrate method.Ni segregation is evident for a substitution level higher than 0. 2. The segregation of Ni as NiO generated species interacts with different metal-support after the reduction step. The y = 0.1 catalyst presents the highest H_2 yield value about 85% during reaction time,with low mean values of CH_4 and CO selectivities of 3.4% and 11%,respectively and a low carbon formation. The better performance of y = 0.1 catalyst could be attributed to the minor proportion of segregated phases,thus a controlled expulsion of Ni is successfully reached. 展开更多
关键词 perovskites catalyst DESIGN ETHANOL STEAM REFORMING
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部