期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
不同密度湿地松纸浆原料试验林早期冠幅生长模型研究 被引量:13
1
作者 周志翔 徐永荣 +1 位作者 王鹏程 高方彬 《华中农业大学学报》 CAS CSCD 北大核心 1998年第3期289-293,共5页
应用回归分析方法,对鄂中丘陵岗地不同密度湿地松纸浆原料试验林前4年冠幅生长与树龄的关系进行了研究。结果表明,高密度湿地松幼林冠幅生长遵循逻辑斯蒂生长模型,中等密度湿地松幼林冠幅生长遵循严格苏玛克生长模型,低密度湿地松... 应用回归分析方法,对鄂中丘陵岗地不同密度湿地松纸浆原料试验林前4年冠幅生长与树龄的关系进行了研究。结果表明,高密度湿地松幼林冠幅生长遵循逻辑斯蒂生长模型,中等密度湿地松幼林冠幅生长遵循严格苏玛克生长模型,低密度湿地松幼林冠幅生长则遵循指数生长模型,并对各密度冠幅生长模型进行了比较分析。 展开更多
关键词 湿地松 冠幅 生长模型 回归分析
在线阅读 下载PDF
Mapping methods for output-based objective speech quality assessment using data mining 被引量:2
2
作者 王晶 赵胜辉 +1 位作者 谢湘 匡镜明 《Journal of Central South University》 SCIE EI CAS 2014年第5期1919-1926,共8页
Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T... Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error. 展开更多
关键词 objective speech quality data mining multivariate non-linear regression fuzzy neural network support vector regression
在线阅读 下载PDF
基因型与环境互作研究的新进展 被引量:70
3
作者 黄英姿 毛盛贤 《作物学报》 CAS CSCD 北大核心 1992年第2期116-125,共10页
研究基因型-环境互作是进行遗传分析、品种评价的一个重要环节。Freeman(1973)、Hill(1975)和 Westcott(1986)对用于这一领域的研究方法进行了总结回顾。本文将系统地阐述其中研究非线性基因型-环境互作的方法的基本理论及运用思想。包... 研究基因型-环境互作是进行遗传分析、品种评价的一个重要环节。Freeman(1973)、Hill(1975)和 Westcott(1986)对用于这一领域的研究方法进行了总结回顾。本文将系统地阐述其中研究非线性基因型-环境互作的方法的基本理论及运用思想。包括非线性回归分析、聚类分析、主分量分析、偶图法、多维标度法和主坐标分析及对应分析。 展开更多
关键词 基因型 环境互作 聚类分析
在线阅读 下载PDF
Application of deep autoencoder model for structural condition monitoring
4
作者 PATHIRAGE Chathurdara Sri Nadith LI Jun +2 位作者 LI Ling HAO Hong LIU Wanquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期873-880,共8页
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea... Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion. 展开更多
关键词 auto encoder non-linear regression deep auto en-coder model damage identification VIBRATION structural health monitoring
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部