为了提高电力负荷监控的准确性,研究融合主成分含噪密度聚类(density-based spatial clustering of applications with noise with principal component analysis,PCADBSCAN)的混合非侵入式负荷辨识方法。首先,针对原始负荷特征维度较...为了提高电力负荷监控的准确性,研究融合主成分含噪密度聚类(density-based spatial clustering of applications with noise with principal component analysis,PCADBSCAN)的混合非侵入式负荷辨识方法。首先,针对原始负荷特征维度较高的问题,采用主成分分析算法对原始特征数据降维,构建负荷特征模板库,同时,获取负荷电流波形,构建负荷电流模板库。其次,采用基于密度的聚类算法对负荷特征模板库内的样本进行非监督聚类,提取各聚类簇中心。然后,计算待辨识负荷与各特征模板库聚类中心的欧式距离,完成负荷特征匹配,并计算待辨识负荷的电流波形与电流模板库内各电流波形的综合关联度,完成负荷电流波形匹配。最后,混合两次匹配结果,综合判断待辨识负荷,从而实现高可靠辨识。基于用电数据测试数据集的仿真结果显示,该方法各项指标均超过96%。展开更多
针对区域配网变压器(简称“配变”)数量多,大量新型负荷、分布式光伏等接入,配变电压随机性波动增强,台区用户电压质量面临挑战。为更好地对区域配变电压进行越限特征分析及预测,提出了基于关联特征筛选的双层聚类区域配变电压预测方法...针对区域配网变压器(简称“配变”)数量多,大量新型负荷、分布式光伏等接入,配变电压随机性波动增强,台区用户电压质量面临挑战。为更好地对区域配变电压进行越限特征分析及预测,提出了基于关联特征筛选的双层聚类区域配变电压预测方法。首先,将区域配变的越限天数作为第一层聚类特征,获得电压性质正常以及越上限的配变。其次,针对电压越限配变提出结合Pearson相关系数和欧氏距离(Euclidean distance)的最优度量矩阵,提取原有数据的内含信息,作为K均值聚类(K-means)的输入,实现对区域配变双层聚类。在此基础上,选取该集群中代表配变表征该类配变,利用卷积双向长短期记忆网络-注意力机制(convolutional neural network-bidirectional long and short-term memory-attention,CNN-BiLSTM-Attention)模型对配变电压进行预测,该模型能够提取输入数据的双向信息特征,并对重要特征加权,从多时间尺度上获得双向特征信息用于预测。最后,在上海市某区域配变验证了该方法的有效性。展开更多
局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的...局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的LLE方法在适当选取近邻点个数情况下,可得到良好的效果。对从高维采样数据中恢复得到低维数据集,通过本文提出的离群数据假设,并结合本文给出的离群聚类方法对所得低维数据是否是离群数据进行判别。仿真文验的结果表明了该方法能够有效地发现高维数据集中的离群点,与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为离群点检测问题的机器学习提供了一条新的途径。展开更多
给出了一种针对大量新闻数据的话题检测方法.首先通过LDA(latent dirichlet allocation)模型从语义层面抽取新闻数据主题,有效降低数据分析维度,更合理地体现新闻主题特征.然后改进OPTICS(ordering point to identify the cluster struc...给出了一种针对大量新闻数据的话题检测方法.首先通过LDA(latent dirichlet allocation)模型从语义层面抽取新闻数据主题,有效降低数据分析维度,更合理地体现新闻主题特征.然后改进OPTICS(ordering point to identify the cluster structure)密度聚类算法,基于新闻话题的时间延续性给出了T-OPTICS算法.该算法继承了OPTICS算法对参数不敏感的特性,降低了参数选择对聚类结果的影响.改进了OPTICS算法中文本间相似度的计算方法,体现了话题的时间延续性.基于TDT4数据集的实验表明,该方法能够快速有效地发现新闻中的话题.展开更多
为了使近邻传播(AP)聚类在高维空间中获得更好的聚类效果,该文提出一种基于谱分析的近邻传播聚类方法(Affinity Propagation based on Spectrum analyze,AP-SA)。首先,通过采用谱分析技术将分布在高维非线性的数据点集映射到几乎线性的...为了使近邻传播(AP)聚类在高维空间中获得更好的聚类效果,该文提出一种基于谱分析的近邻传播聚类方法(Affinity Propagation based on Spectrum analyze,AP-SA)。首先,通过采用谱分析技术将分布在高维非线性的数据点集映射到几乎线性的子空间上,映射过程实现高维数据降至低维。最后,通过AP聚类算法对映射在低维空间上的数据进行聚类,从而提高了AP算法在高维空间上的聚类性能。仿真实验结果表明,该方法相比于传统AP算法,在低维数据中无明显的优势,但随着实验的数据集的样本规模与维数的增加,在高维数据中的该方法降低了聚类时间的同时,也保证了较好的聚类效果。展开更多
文摘为了提高电力负荷监控的准确性,研究融合主成分含噪密度聚类(density-based spatial clustering of applications with noise with principal component analysis,PCADBSCAN)的混合非侵入式负荷辨识方法。首先,针对原始负荷特征维度较高的问题,采用主成分分析算法对原始特征数据降维,构建负荷特征模板库,同时,获取负荷电流波形,构建负荷电流模板库。其次,采用基于密度的聚类算法对负荷特征模板库内的样本进行非监督聚类,提取各聚类簇中心。然后,计算待辨识负荷与各特征模板库聚类中心的欧式距离,完成负荷特征匹配,并计算待辨识负荷的电流波形与电流模板库内各电流波形的综合关联度,完成负荷电流波形匹配。最后,混合两次匹配结果,综合判断待辨识负荷,从而实现高可靠辨识。基于用电数据测试数据集的仿真结果显示,该方法各项指标均超过96%。
文摘针对区域配网变压器(简称“配变”)数量多,大量新型负荷、分布式光伏等接入,配变电压随机性波动增强,台区用户电压质量面临挑战。为更好地对区域配变电压进行越限特征分析及预测,提出了基于关联特征筛选的双层聚类区域配变电压预测方法。首先,将区域配变的越限天数作为第一层聚类特征,获得电压性质正常以及越上限的配变。其次,针对电压越限配变提出结合Pearson相关系数和欧氏距离(Euclidean distance)的最优度量矩阵,提取原有数据的内含信息,作为K均值聚类(K-means)的输入,实现对区域配变双层聚类。在此基础上,选取该集群中代表配变表征该类配变,利用卷积双向长短期记忆网络-注意力机制(convolutional neural network-bidirectional long and short-term memory-attention,CNN-BiLSTM-Attention)模型对配变电压进行预测,该模型能够提取输入数据的双向信息特征,并对重要特征加权,从多时间尺度上获得双向特征信息用于预测。最后,在上海市某区域配变验证了该方法的有效性。
文摘研究了基于面板数据的含分布式电源(distributed generator,DG)的主动配电网规划场景的降维技术。首先,对主动配电网的中长期规划进行时序模拟,将负荷按不同的类型建立其增长的时序数学模型,在考虑光伏、风电等DG容量自然增长的前提下采用自回归-滑动平均(auto regression-moving average model,ARMA)模型建立时序模型;然后,引入统计学中的变点理论分别建立DG和负荷的时序分区子场景,最后通过综合变点理论对上述时序场景进行融合,分段抽取出典型时序场景。仿真表明,有序聚类可以有效体现不同时间尺度上负荷以及DG的增长运行情况;通过搜寻变点,能将模拟出的近百万个中长期时序场景有序地聚类成14个连续时间场景,大大削减了场景个数,提高了效率。
文摘局部线性嵌入算法(locally linear embedding,LLE)是一种流形降维方法,在高维稀疏数据空间中,针对LLE不适合稀疏采样和欧氏距离公式的缺陷,研究该算法的扩展,引入核函数,并将样本映射到高维特征空间,核映射改善了样本的空间分布,改进的LLE方法在适当选取近邻点个数情况下,可得到良好的效果。对从高维采样数据中恢复得到低维数据集,通过本文提出的离群数据假设,并结合本文给出的离群聚类方法对所得低维数据是否是离群数据进行判别。仿真文验的结果表明了该方法能够有效地发现高维数据集中的离群点,与此同时,该算法具有参数估计简单、参数影响不大等优点,该算法为离群点检测问题的机器学习提供了一条新的途径。
文摘给出了一种针对大量新闻数据的话题检测方法.首先通过LDA(latent dirichlet allocation)模型从语义层面抽取新闻数据主题,有效降低数据分析维度,更合理地体现新闻主题特征.然后改进OPTICS(ordering point to identify the cluster structure)密度聚类算法,基于新闻话题的时间延续性给出了T-OPTICS算法.该算法继承了OPTICS算法对参数不敏感的特性,降低了参数选择对聚类结果的影响.改进了OPTICS算法中文本间相似度的计算方法,体现了话题的时间延续性.基于TDT4数据集的实验表明,该方法能够快速有效地发现新闻中的话题.
文摘为了使近邻传播(AP)聚类在高维空间中获得更好的聚类效果,该文提出一种基于谱分析的近邻传播聚类方法(Affinity Propagation based on Spectrum analyze,AP-SA)。首先,通过采用谱分析技术将分布在高维非线性的数据点集映射到几乎线性的子空间上,映射过程实现高维数据降至低维。最后,通过AP聚类算法对映射在低维空间上的数据进行聚类,从而提高了AP算法在高维空间上的聚类性能。仿真实验结果表明,该方法相比于传统AP算法,在低维数据中无明显的优势,但随着实验的数据集的样本规模与维数的增加,在高维数据中的该方法降低了聚类时间的同时,也保证了较好的聚类效果。