The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years. The localization accuracy will drastically grade in non-line of sight(NLOS) conditions. In this pape...The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years. The localization accuracy will drastically grade in non-line of sight(NLOS) conditions. In this paper, we propose a mobile localization strategy based on Kalman filter. The key technologies for the proposed method are the NLOS identification and mitigation. The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways. Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.展开更多
为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测...为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61403068, No. 61232016, No. U1405254 and No. 61501100Fundamental Research Funds for the Central Universities of China under Grant No. N130323002 and No. N130323004+3 种基金Natural Science Foundation of Hebei Province under Grant No. F2015501097 and No. F2016501080Scientific Research Fund of Hebei Provincial Education Department under Grant No. Z2014078the PAPD fundNEUQ internal funding under Grant No. XNB201509 and XNB201510
文摘The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years. The localization accuracy will drastically grade in non-line of sight(NLOS) conditions. In this paper, we propose a mobile localization strategy based on Kalman filter. The key technologies for the proposed method are the NLOS identification and mitigation. The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways. Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.
文摘为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.