To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement a...To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.展开更多
A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduce...A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.展开更多
Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on com...Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.展开更多
The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the pred...The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion.展开更多
A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of ...A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the soil backfills.The influence of tension crack in the top portion of the backfill under seismic loading was investigated.The effects of wall friction angle,soil friction angle,horizontal and vertical seismic coefficients on the seismic active force were also explored.The parametric study shows that the total seismic active force increases as horizontal seismic coefficient increases,while it decreases with the increase in vertical seismic coefficient,internal friction angle and unit cohesion.The seismic active force calculated by the proposed method is larger than that calculated by previous theory.展开更多
针对刚性挡墙绕基底转动与平动耦合(rotation around the base and translation coupling,简称RBT)模式下砂土非极限主动土压力的分布问题,选取转动中心位置参数n=0.5、1.0、5.0共3组转动中心对其进行离散元模拟研究。结果表明,RBT模式...针对刚性挡墙绕基底转动与平动耦合(rotation around the base and translation coupling,简称RBT)模式下砂土非极限主动土压力的分布问题,选取转动中心位置参数n=0.5、1.0、5.0共3组转动中心对其进行离散元模拟研究。结果表明,RBT模式下主动土压力兼具绕基底转动(rotation around base,简称RB)模式下凹型分布和平动(translational,简称T)模式直线分布的特点。在破坏过程中,墙土摩擦角往往先于内摩擦角达到极限值,墙后滑裂面为一曲面,且土体滑裂面处有明显的主应力偏转现象。基于数值模拟结果,根据中间对称圆弧拱得到了层间等效内摩擦角与n的函数关系式,利用水平层分析法,建立了曲边梯形微分单元的受力平衡方程,采用有限差分法求解得到了RBT模式非极限主动土压力数值解。参数分析表明,墙体位移、内摩擦角及转动中心位置参数n对主动土压力具有显著的影响。通过与数值模拟和模型试验的对比,验证了所提理论的合理性和可靠性,研究成果可为刚性挡土墙土压力计算提供参考。展开更多
基金Projects(51978084, 51678073) supported by the National Natural Science Foundation of ChinaProject(2020JJ4605) supported by the Natural Science Foundation of Hunan Province, ChinaProject(2019IC13) supported by the International Cooperation and Development Project of Double First-Class Scientific Research in Changsha University of Science & Technology, China。
文摘To determine the distribution of active earth pressure on retaining walls, a series of model tests with the horizontally translating rigid walls are designed. Particle image velocimetry is used to study the movement and shear strain during the active failure of soil with height H and friction angle φ. The test results show that there are 3 stages of soil deformation under retaining wall translation: the initial stage, the expansion stage and the stability stage. The stable sliding surface in the model tests can be considered to be composed of two parts. Within the height range of 0.82 H-1.0 H, it is a plane at an angle of π/4+φ/2 to the horizontal plane. In the height range of 0-0.82 H, it is a curve between a logarithmic spiral and a plane at an angle of π/4+φ/2 to the horizontal. A new method applicable to any sliding surface is proposed for active earth pressure with the consideration of arching effect. The active earth pressure is computed with the actual shape of the slip surface and compared with model test data and with predictions obtained by existing methods. The comparison shows that predictions from the newly proposed method are more consistent with the measured data than the predictions from the other methods.
基金Projects(51908557,51378510)supported by the National Natural Science Foundation of China。
文摘A method combining the pseudo-dynamic approach and discretization technique is carried out for computing the active earth pressure.Instead of using a presupposed failure mechanism,discretization technique is introduced to generate the potential failure surface,which is applicable to the case that soil strength parameters have spatial variability.For the purpose of analyzing the effect of earthquake,pseudo-dynamic approach is adopted to introduce the seismic forces,which can take into account the dynamic properties of seismic acceleration.A new type of micro-element is used to calculate the rate of work of external forces and the rate of internal energy dissipation.The analytical expression of seismic active earth pressure coefficient is deduced in the light of upper bound theorem and the corresponding upper bound solutions are obtained through numerical optimization.The method is validated by comparing the results of this paper with those reported in literatures.The parametric analysis is finally presented to further expound the effect of diverse parameters on active earth pressure under non-uniform soil.
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring,University of Malaya,Malaysia
文摘Determination of distribution and magnitude of active earth pressure is crucial in retaining wall designs. A number of analytical theories on active earth pressure were presented. Yet, there are limited studies on comparison between the theories. In this work, comparison between the theories with finite element analysis is done using the PLAXIS software. The comparative results show that in terms of distribution and magnitude of active earth pressure, RANKINE's theory possesses the highest match to the PLAXIS analysis. Parametric studies were also done to study the responses of active earth pressure distribution to varying parameters Increasing soil friction angle and wall friction causes decrease in active earth pressure. In contrast, active earth pressure increases with increasing soil unit weight and height of wall. RANK/NE's theory has the highest compatibility to finite element analysis among all theories, and utilization of this theory leads to proficient retaining wall design.
基金Projects(51538009,51674115,51804113) supported by the National Natural Science Foundation of China。
文摘The commonly used Mohr-Coulomb(M-C) failure condition has a limitation that it overestimates the tensile strength of cohesive soils. To overcome this limitation, the tensile strength cut-off was applied where the predicted tensile strength is reduced or eliminated. This work then presented a kinematical approach to evaluate the active earth pressure on subgrade retaining walls in cohesive backfills with saturated seepage effects. An effective rotational failure mechanism was constructed assuming an associative flow rule. The impact of seepage forces, whose distribution is described by a closed-form solution, was incorporated into the analysis. The thrust of active earth pressure was derived from the energy conservation equation, and an optimization program was then coded to obtain the most critical solution. Several sets of charts were produced to perform a parameter analysis. The results show that taking soil cohesion into account has a distinct beneficial influence on the stability of retaining walls, while seepage forces have an adverse effect. The active earth pressure increases when tensile strength cut-off is considered, and this increment is more noticeable under larger cohesion.
基金Project(50879077)supported by the National Natural Science Foundation of China
文摘A formula was derived for the computation of seismic active earth pressure behind retaining wall using pseudo-dynamic method.This formula considered the actual dynamic effect with variation of time and propagation of shear and primary wave velocities through the soil backfills.The influence of tension crack in the top portion of the backfill under seismic loading was investigated.The effects of wall friction angle,soil friction angle,horizontal and vertical seismic coefficients on the seismic active force were also explored.The parametric study shows that the total seismic active force increases as horizontal seismic coefficient increases,while it decreases with the increase in vertical seismic coefficient,internal friction angle and unit cohesion.The seismic active force calculated by the proposed method is larger than that calculated by previous theory.
文摘针对刚性挡墙绕基底转动与平动耦合(rotation around the base and translation coupling,简称RBT)模式下砂土非极限主动土压力的分布问题,选取转动中心位置参数n=0.5、1.0、5.0共3组转动中心对其进行离散元模拟研究。结果表明,RBT模式下主动土压力兼具绕基底转动(rotation around base,简称RB)模式下凹型分布和平动(translational,简称T)模式直线分布的特点。在破坏过程中,墙土摩擦角往往先于内摩擦角达到极限值,墙后滑裂面为一曲面,且土体滑裂面处有明显的主应力偏转现象。基于数值模拟结果,根据中间对称圆弧拱得到了层间等效内摩擦角与n的函数关系式,利用水平层分析法,建立了曲边梯形微分单元的受力平衡方程,采用有限差分法求解得到了RBT模式非极限主动土压力数值解。参数分析表明,墙体位移、内摩擦角及转动中心位置参数n对主动土压力具有显著的影响。通过与数值模拟和模型试验的对比,验证了所提理论的合理性和可靠性,研究成果可为刚性挡土墙土压力计算提供参考。