High-order harmonics from helium atom in the orthogonally two-color(OTC) laser field are investigated by solving the two-dimensional time-dependent Schrodinger equation.Non-integer high-order harmonics are obtained in...High-order harmonics from helium atom in the orthogonally two-color(OTC) laser field are investigated by solving the two-dimensional time-dependent Schrodinger equation.Non-integer high-order harmonics are obtained in some ratio of frequencies of two components.Pure odd and even harmonics from atoms could be separated in two components by adjusting the ratio of frequencies in OTC scheme,and the resolution of harmonics is improved at the same time.The physical mechanism is explained by the periodicity of dipole.With the same intensity of the incident laser,the intensity of the high-order harmonics from the OTC field scheme is improved by three orders of magnitude compared to the monochromatic laser field scheme.A theoretical scheme is provided for experimentally achieving improving energy resolution and separation of pure odd and even harmonics in atoms.Also,we provide a means for improving harmonic intensity.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11974229 and 11504221)the Natural Science Foundation of Shanxi Province+4 种基金China(Grant No.201901D111288)the Scientific and Technological Innovation Programs of Higher Education Institutions in ShanxiChina(Grant No.2019L0452)the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi ProvinceChina。
文摘High-order harmonics from helium atom in the orthogonally two-color(OTC) laser field are investigated by solving the two-dimensional time-dependent Schrodinger equation.Non-integer high-order harmonics are obtained in some ratio of frequencies of two components.Pure odd and even harmonics from atoms could be separated in two components by adjusting the ratio of frequencies in OTC scheme,and the resolution of harmonics is improved at the same time.The physical mechanism is explained by the periodicity of dipole.With the same intensity of the incident laser,the intensity of the high-order harmonics from the OTC field scheme is improved by three orders of magnitude compared to the monochromatic laser field scheme.A theoretical scheme is provided for experimentally achieving improving energy resolution and separation of pure odd and even harmonics in atoms.Also,we provide a means for improving harmonic intensity.