期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
小波相关特征尺度熵在滚动轴承故障诊断中的应用 被引量:15
1
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《国防科技大学学报》 EI CAS CSCD 北大核心 2007年第6期102-105,111,共5页
将小波相关滤波方法与Shannon信息熵相结合,提出了一种故障检测与诊断的方法——小波相关特征尺度熵故障法。首先利用小波相关滤波方法提取滚动轴承故障振动信号的微弱故障信息特征,以求得信噪比较高的尺度域小波系数;然后结合Shannon... 将小波相关滤波方法与Shannon信息熵相结合,提出了一种故障检测与诊断的方法——小波相关特征尺度熵故障法。首先利用小波相关滤波方法提取滚动轴承故障振动信号的微弱故障信息特征,以求得信噪比较高的尺度域小波系数;然后结合Shannon信息熵理论给出了沿尺度分布的小波相关特征尺度熵定义及其计算方法。小波相关特征尺度熵能够定量表征不同尺度的能量分布,各尺度能量分布的均匀性可以反映滚动轴承的运行状态的差别,选取最能反映故障特征的小波相关特征尺度熵作为特征参数,通过所选取的小波相关特征尺度熵大小判断滚动轴承的工作状态和故障类型。实验证明该方法能有效地判断滚动轴承故障特征,为滚动轴承故障诊断提供了新的思路。 展开更多
关键词 小波相关滤波 小波相关特征尺度熵 滚动轴承 Shannon熵
在线阅读 下载PDF
基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用 被引量:7
2
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《兵工学报》 EI CAS CSCD 北大核心 2008年第2期198-203,共6页
机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小... 机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小波特征尺度熵,然后构造信号的小波特征尺度熵向量,并以此作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。并且以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,实验结果表明该方法能有效的识别设备的退化状态。 展开更多
关键词 信息处理技术 小波特征尺度熵 隐半马尔可夫模型(HSMM) 状态识别 退化状态
在线阅读 下载PDF
基于非广延小波特征尺度熵和支持向量机的轴承状态识别 被引量:10
3
作者 董绍江 汤宝平 张焱 《振动与冲击》 EI CSCD 北大核心 2012年第15期50-54,共5页
为了对轴承的运行状态进行有效的识别,以便进一步评估和预测轴承的寿命,提出了基于非广延小波特征尺度熵和Morlet小波核支持向量机(Morlet Wavelet Kernel Support Vector Machine,MWSVM)的轴承运行状态识别的新方法。对采集到的轴承振... 为了对轴承的运行状态进行有效的识别,以便进一步评估和预测轴承的寿命,提出了基于非广延小波特征尺度熵和Morlet小波核支持向量机(Morlet Wavelet Kernel Support Vector Machine,MWSVM)的轴承运行状态识别的新方法。对采集到的轴承振动信号进行小波分解,得到相应的小波分解系数,在此基础上结合非广延熵理论提出了沿尺度分布的非广延小波尺度熵特征提取方法。但是通过小波特征尺度熵分析后获得的特征信息存在维数较高,特征信息间冗余严重的问题,因此,引入了流形学维数约简算法(Locality Preserving Projection,LPP)进行敏感特征信息的提取,减少在特征信息提取过程中人为因素的干扰。以约简后的特征信息作为MWSVM的输入进行训练,建立轴承的状态识别模型,从而实现轴承状态的识别。通过对某轴承内圈正常状态和几种故障程度不同的状态进行识别,试验结果表明了方法的有效性。 展开更多
关键词 非广延小波特征尺度熵 流形学算法 Morlet小波核支持向量机 状态识别
在线阅读 下载PDF
改进EWT_MPE模型在矿山微震信号特征提取中的应用 被引量:6
4
作者 程铁栋 易其文 +4 位作者 吴义文 戴聪聪 蔡改贫 杨丽荣 尹宝勇 《振动与冲击》 EI CSCD 北大核心 2021年第9期92-101,共10页
针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用... 针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用仿真信号验证了改进算法的可行性和准确性。将实际采集到的微震与爆破信号进行改进EWT分解,借助相关性分析从分解得到的本征模态函数(intrinsic mode function,IMF)分量中筛选出最优分量IMF1~IMF5。进而将筛选到的IMF分量进行重构,并计算重构信号的MPE值。应用GK模糊聚类算法对微震与爆破振动信号进行分类识别。结果表明,微震信号的MPE值要小于爆破信号的MPE值,且当嵌入维数m=5,尺度因子s=12,延迟时间τ=1时,两种信号的MPE值差异最大。基于改进EWT_MPE_GK模糊聚类算法的分类识别准确率达到93.5%,平均模糊熵(E)更接近0、分类系数(C)更接近1,与传统EWT_MPE_GK模糊聚类和EMD_MPE_GK模糊聚类相比,其聚类效果更优、识别准确率分别提高了3%和5.5%。 展开更多
关键词 经验小波变换 多尺度排列熵 Gustafson-kessel(GK)模糊聚类 特征提取 分类识别
在线阅读 下载PDF
基于小波包分解多尺度排列熵及2阶特征选择的转辙机故障诊断方法 被引量:7
5
作者 孙永奎 曹源 +1 位作者 李鹏 李旭 《中国铁道科学》 EI CAS CSCD 北大核心 2023年第3期178-188,共11页
针对转辙机高精度故障诊断的需求,结合声音信号非接触、易采集等优势,提出一种基于声音信号的非接触式故障诊断方法。首先,基于小波包分解与多尺度排列熵,实现对声音样本的特征提取;其次,提出基于ReliefF和二进制粒子群优化算法的2阶特... 针对转辙机高精度故障诊断的需求,结合声音信号非接触、易采集等优势,提出一种基于声音信号的非接触式故障诊断方法。首先,基于小波包分解与多尺度排列熵,实现对声音样本的特征提取;其次,提出基于ReliefF和二进制粒子群优化算法的2阶特征选择方法,得到最佳特征集合,实现对声音样本的特征选择;最后,基于支持向量机算法对最佳特征集进行训练和测试,完成对转辙机的故障诊断。依托10种常见工况下共计800组声音样本开展实验,结果表明:该方法在反位—定位和定位—反位转换过程中得到的特征点数分别为13和39个,故障诊断准确率分别为99.67%和100%;相比于单一特征选择方法,采用的2阶特征选择方法能够大大降低特征维度,提高故障诊断准确率;相比于k近邻和线性判别分析这2种分类器,支持向量机分类器在转辙机故障诊断中更具优势。 展开更多
关键词 转辙机 故障诊断 小波包分解 多尺度排列熵 2阶特征选择 支持向量机
在线阅读 下载PDF
基于WCFSE-FSVM的转子振动故障诊断方法 被引量:4
6
作者 费成巍 白广忱 《推进技术》 EI CAS CSCD 北大核心 2013年第9期1266-1271,共6页
为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获... 为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获得原始故障数据;并利用WCFSE方法提取这些故障数据的WCFSE值,选取故障信号高频段中的尺度1和尺度2上的小波相关特征尺度熵W1和W2构造出振动信号的故障向量作为故障样本,建立FSVM诊断模型。实例分析显示:WCFSE-FSVM方法的转子故障诊断精度最高,即故障类别诊断精度为94.49%,故障严重程度的诊断精度为95.58%,二者都优于其它故障诊断方法。验证了WCFSEFSVM方法的可行性和有效性。 展开更多
关键词 小波相关特征尺度熵 模糊支持向量机 转子振动 故障诊断
在线阅读 下载PDF
基于自适应谐波小波和能量熵的转子系统故障诊断研究 被引量:3
7
作者 邓飞跃 《中国测试》 CAS 北大核心 2016年第8期103-107,共5页
针对转子系统非平稳振动时故障特征难以准确提取的问题,提出一种基于自适应谐波小波和能量熵的转子系统故障诊断方法。首先,采用连续谐波小波方法分解转子信号,克服"二进制"谐波小波包分解不能任意选取感兴趣频段的缺限,同时... 针对转子系统非平稳振动时故障特征难以准确提取的问题,提出一种基于自适应谐波小波和能量熵的转子系统故障诊断方法。首先,采用连续谐波小波方法分解转子信号,克服"二进制"谐波小波包分解不能任意选取感兴趣频段的缺限,同时在分解过程中通过时间尺度变换的方式消除信号采集过程中不同转速及采样频率的影响;然后,通过设定合理的分解参数,提取出表征转子系统的故障特征信息并构建故障模式矩阵,得到转子系统早期局部碰摩、全周碰摩、油膜涡动和油膜振荡等4种工况下的能量熵值;最后,将特征向量输入支持向量机(support vector machine,SVM)判断出转子系统的故障类型。试验结果表明:该方法可以有效用于转子系统的故障诊断。 展开更多
关键词 转子 谐波小波 故障特征 时间尺度变换 能量熵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部