期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
1
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
在线阅读 下载PDF
非支配排序鲸鱼优化算法在深圳沿江沉管隧道管节长度优化中的应用
2
作者 苏林王 赵一鸣 +1 位作者 王雪刚 左华楠 《隧道建设(中英文)》 北大核心 2025年第5期964-974,共11页
为解决沉管隧道管节长度传统优化算法在多目标优化中的局限性问题,提出一种基于非支配排序的改进鲸鱼优化算法(NDSWOA)。首先,分析沉管隧道管节长度对施工工期、造价及结构安全性的影响因素,并建立多目标优化模型;然后,设计并实现NDSWO... 为解决沉管隧道管节长度传统优化算法在多目标优化中的局限性问题,提出一种基于非支配排序的改进鲸鱼优化算法(NDSWOA)。首先,分析沉管隧道管节长度对施工工期、造价及结构安全性的影响因素,并建立多目标优化模型;然后,设计并实现NDSWOA算法,将非支配排序机制与鲸鱼优化算法相结合,以增强算法的全局搜索能力和解集多样性;最后,选取深圳沿江沉管隧道项目为工程案例,采用NDSWOA优化管节长度,并与NSGA-Ⅱ和MOEA/D等传统优化算法进行对比分析。试验结果表明:1)NDSWOA在处理沉管隧道管节长度优化问题时,展现出更快的收敛速度和更优的解质量,能够生成均匀分布的帕累托前沿解。2)相比于NSGA-Ⅱ和MOEA/D,NDSWOA在优化工期、造价和结构安全性方面表现更优,由此优化得到推荐管节长度为80 m,可在各优化目标之间取得平衡。 展开更多
关键词 沉管隧道 管节长度优化 非支配排序 鲸鱼优化算法 多目标优化
在线阅读 下载PDF
基于非支配排序鲸鱼优化算法的车用传动系统优化设计 被引量:1
3
作者 孙义港 尹红彬 +3 位作者 李国昊 张哲 毕向军 胡文静 《机电工程》 北大核心 2025年第4期647-657,共11页
针对某纯电动商用车的传动系统在动力性能和能量效率优化方面存在的问题,提出了一种基于非支配排序鲸鱼优化算法(NSWOA)的两挡传动系统优化设计方法。首先,根据整车基本参数及性能要求,为其匹配了合理的两挡变速器,并搭建了整车仿真模型... 针对某纯电动商用车的传动系统在动力性能和能量效率优化方面存在的问题,提出了一种基于非支配排序鲸鱼优化算法(NSWOA)的两挡传动系统优化设计方法。首先,根据整车基本参数及性能要求,为其匹配了合理的两挡变速器,并搭建了整车仿真模型;其次,以能量消耗最小化和动力性能最大化为目标,运用了NSWOA算法,对传动系统传动比进行了多目标优化处理;最后,采用MATLAB/Simulink搭建了整车动力系统仿真模型,对多目标优化后的传动比进行了仿真分析;并通过硬件在环实验对仿真结果及优化设计方法的可行性进行了验证。研究结果表明:采用NSWOA算法对传动系统进行优化设计,能保证整车动力性,并提高整车的经济性;与传统算法相比,NSWOA算法的Pareto解集更均匀,寻优时间缩短至18.248 s;动力性方面,最高车速增加至107.3 km/h,原地起步加速时间和最大爬坡度分别维持在10.9 s和43.3%;经济性方面,CHTC-LT工况单次循环电池荷电状态(SOC)消耗降至5.51%,同工况下续驶里程增至286.66 km,延长了7.67 km。该研究可以为电动商用车传动系统优化设计提供一种新的方法。 展开更多
关键词 车用传动系统 非支配排序鲸鱼优化算法(NSWOA) 参数优化匹配 电池荷电状态 硬件在环实验 传动比
在线阅读 下载PDF
基于不确定需求和服务效用的应急物资配送中心选址研究
4
作者 万孟然 叶春明 +1 位作者 彭大江 董君 《运筹与管理》 北大核心 2025年第4期106-112,I0034-I0047,共21页
为加快灾后应急物资的快速分配,减少受灾地区人员因未得到服务而产生的伤害,本文提出了一种基于不确定需求和服务效用的应急物资配送中心选址多目标优化模型。该模型以最大化受灾区域各需求点的整体服务效用、最小化救援行动的总成本为... 为加快灾后应急物资的快速分配,减少受灾地区人员因未得到服务而产生的伤害,本文提出了一种基于不确定需求和服务效用的应急物资配送中心选址多目标优化模型。该模型以最大化受灾区域各需求点的整体服务效用、最小化救援行动的总成本为目标,力求在复杂多变的灾后环境中提升应急响应效率与资源配置公平性。此外,考虑到灾后实际需求常具有模糊性和不确定性,本文引入模糊数对各需求点的物资需求进行建模,使模型更贴近现实决策场景。为求解该多目标优化问题,提出了基于折射反向学习的非支配排序鲸鱼优化算法(Refracted Opposition-based Learning for Non-dominated Sorting Whale Optimization Algorithm,ROLNSWOA)。并通过中国上海为背景的真实案例,与非支配排序鲸鱼优化算法、非支配排序遗传算法II、强度帕累托进化算法Ⅱ、基于分解的多目标进化算法和多目标粒子群算法进行比较,验证了ROLNSWOA算法的性能和应用价值。 展开更多
关键词 模糊需求 应急物资配送中心选址 服务效用 基于折射反向学习的非支配排序鲸鱼优化算法
在线阅读 下载PDF
Satellite constellation design with genetic algorithms based on system performance
5
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
6
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
7
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
基于NSWOA-ELM算法的水稻冠层氮素含量反演方法
8
作者 于丰华 曹慧妮 +4 位作者 金忠煜 王楠 李世隆 孙道明 许童羽 《农业机械学报》 2025年第7期532-540,共9页
以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于... 以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于多目标鲸鱼优化算法(Non-dominated Sorting whale optimization algorithm,NSWOA)优化的极限学习机(Extreme learning machine,ELM)模型,用于反演水稻冠层氮素含量。利用误差反向传播神经网络(Back propagation neural network,BPNN)和ELM模型,与NSWOA优化后的ELM模型进行对比。结果表明,SPA算法筛选出的特征波长为400、440、487、542、589、660、675、739、766、808、878、912、949 nm。使用筛选后的特征波长反射率构建NSWOA-ELM水稻冠层氮素含量反演模型效果最好,训练集R^(2)为0.859 3,RMSE为0.200 2 mg/g;验证集R^(2)为0.854 3,RMSE为0.206 9 mg/g。与BP神经网络和ELM模型相比,NSWOA-ELM在预测能力和模型稳定性方面具有显著优势。综上,基于NSWOA-ELM的水稻冠层氮素含量反演模型能够为水稻生长状况的描述及精准施肥提供可靠支持。 展开更多
关键词 水稻冠层 氮素 高光谱 多目标鲸鱼优化算法 极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部