期刊文献+
共找到438篇文章
< 1 2 22 >
每页显示 20 50 100
基于改进NSGA-Ⅱ的煤矿井下智能无轨辅助调度路径优化方法研究 被引量:2
1
作者 贾纯纯 马超 +2 位作者 张亚邦 易贝贝 王海波 《中国矿业》 北大核心 2025年第5期137-143,共7页
针对现有煤矿井下智能无轨辅助运输系统调度及路径规划效率低、考虑现实约束不足的问题,提出了一种基于改进NSGA-II的调度运输路径规划方法。以最小运输成本、最小电力机车机器人总等待时间、最小煤矿运输期望偏差为目标函数,最小卸货... 针对现有煤矿井下智能无轨辅助运输系统调度及路径规划效率低、考虑现实约束不足的问题,提出了一种基于改进NSGA-II的调度运输路径规划方法。以最小运输成本、最小电力机车机器人总等待时间、最小煤矿运输期望偏差为目标函数,最小卸货量、装货点运出总容量、装货次数、卸货点的最大卸货容量等约束条件建立煤矿井下智能无轨辅助运输系统多目标优化函数。提出了一种改进NSGA-II的多目标优化算法,使用Levy飞行、随机游走、自适应权重等策略分别提高算法的全局和局部搜索能力,加快算法收敛速度。模拟场景实验表明,与无优化方案相比,所提改进NSGA-II优化后的平衡方案使运输成本降低约19%,排队等待时间缩短约56%,最小煤矿运输期望偏差下降约40.5%。实验结果验证了所提改进NSGA-II算法优化结果的有效性和实用性,可为煤矿井下生产管理提供多种优化选择方案,具有广阔的应用前景。 展开更多
关键词 煤矿 智能无轨辅助运输 调度 路径优化 非支配排序遗传算法
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的含地热发电电力系统多目标优化调度 被引量:3
2
作者 孔祥祺 张鹏 +4 位作者 孟珣 邵萌 唐涛 张新茹 孙金伟 《热力发电》 北大核心 2025年第2期30-41,共12页
针对目前风电、光伏发电波动性大和典型区域消纳困难的问题,将出力可靠、爬坡迅速的地热发电纳入混合能源系统,提出了一种地热发电促进风光消纳的新型混合能源系统优化调度方法。综合考虑运行成本和运行风险,以机组物理特性为约束条件,... 针对目前风电、光伏发电波动性大和典型区域消纳困难的问题,将出力可靠、爬坡迅速的地热发电纳入混合能源系统,提出了一种地热发电促进风光消纳的新型混合能源系统优化调度方法。综合考虑运行成本和运行风险,以机组物理特性为约束条件,建立新型混合能源系统多目标优化调度模型;提出滚动修补策略修复种群初始值,基于自适应均衡模型和非支配排序遗传算法求解模型。本算法相较于传统算法更适合解决高维度、高复杂度的约束问题,且收敛速度较快。通过西藏某区域冬季典型日2种场景计算实例对比分析发现,地热发电使风光消纳率分别上升了8.0%、7.9%,同时系统运行成本和风险指数分别下降了2.5%、7.1%。证实地热发电可促进风光消纳和提高电力系统可靠性,为混合能源系统的决策调度提供理论支撑。 展开更多
关键词 混合能源系统 地热发电 多目标优化 自适应均衡模型 非支配排序遗传算法
在线阅读 下载PDF
OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计
3
作者 陆怡宇 张元标 +1 位作者 杨松平 聂楚昕 《振动与冲击》 北大核心 2025年第1期102-112,共11页
利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系... 利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系统优化设计。试验结果表明:产品关键元件实测振动加速度响应曲线与OTPA方法合成的加速度响应曲线吻合良好,验证了OTPA方法的正确性;通过OTPA方法量化各传递路径的振动贡献量,对比识别出产品包装系统的主要振动传递路径;保持非主要传递路径的缓冲衬垫材料不变,应用NSGA-Ⅱ算法优化产品包装件系统中主要振动传递路径处的缓冲衬垫分配,有效降低了关键元件的加速度响应,减少在振动过程中的能量聚集,促使各传递路径的振动贡献量趋于均衡。实现了以缓冲性能为主导,同时兼顾环保性能与成本的包装系统优化设计,验证了优化方法的有效性,为产品包装系统设计提供参考。 展开更多
关键词 随机振动 工况传递路径分析(OTPA) 振动贡献量 非支配排序遗传算法(nsga-) 减振优化
在线阅读 下载PDF
基于SVR-NSGA-Ⅱ算法的混合电池热仿真优化
4
作者 莫文迪 王思静 +2 位作者 林伊婷 练成 刘洪来 《化工进展》 北大核心 2025年第8期4795-4807,共13页
锂电池热管理是确保电池热安全的关键,虽然传统的有限元分析方法被广泛应用于锂电池热管理研究,但存在计算效率低、参数设置复杂等局限性。本文提出了一种结合特征工程和有限元分析结果的机器学习模型,通过正交设计方法有效减小所需的... 锂电池热管理是确保电池热安全的关键,虽然传统的有限元分析方法被广泛应用于锂电池热管理研究,但存在计算效率低、参数设置复杂等局限性。本文提出了一种结合特征工程和有限元分析结果的机器学习模型,通过正交设计方法有效减小所需的有限元仿真数据量;利用支持向量回归(SVR)模型准确预测混合电池包的温度特征;采用非支配排序遗传算法Ⅱ(NSGA-Ⅱ)系统分析了电池结构参数与冷却策略的协同优化关系,提出了兼顾散热性能与能耗效率的最佳方案。与传统方法相比,本方法在保持预测精度的同时大幅提升了计算效率,为电池热管理系统的智能化设计提供了新思路。本研究构建的“特征提取-机器学习建模-多目标优化”技术框架,不仅能够准确预测电池温度特性,还能为不同应用场景下的热管理方案优化提供决策支持。该方法在电动汽车和储能系统等领域具有重要的工程应用价值,有助于提升电池系统的安全性与能效。 展开更多
关键词 电池热管理 有限元分析 支持向量回归 非支配排序遗传算法
在线阅读 下载PDF
基于SimAM-CNN和NSGA-Ⅱ的平凸透镜注射压缩成型工艺参数多目标优化
5
作者 徐智伟 刘锋 +3 位作者 庞建军 李亚东 陶惠敏 何雨辰 《工程塑料应用》 北大核心 2025年第9期126-134,共9页
注射压缩成型工艺(ICM)凭借低注射压力与均匀模具型腔压缩力已成为一种理想的聚合物透镜成型技术。然而,ICM工艺参数间存在复杂非线性交互关系,使得控制成型透镜质量变得十分困难。针对某款平凸透镜的注射压缩成型过程,以透镜成像相移... 注射压缩成型工艺(ICM)凭借低注射压力与均匀模具型腔压缩力已成为一种理想的聚合物透镜成型技术。然而,ICM工艺参数间存在复杂非线性交互关系,使得控制成型透镜质量变得十分困难。针对某款平凸透镜的注射压缩成型过程,以透镜成像相移和相移分布均匀度为质量设计目标,选取模具温度、熔体温度、注射时间、保压时间、保压压力、压缩距离和压缩速度等工艺参数为设计变量,进行Taguchi实验设计与Moldflow模拟分析。采用信噪比望小特性模型对实验模拟结果进行分析,结果表明,影响相移目标的重要工艺参数依次为保压时间、保压压力和注射时间,而影响均匀度目标的最重要工艺参数依次为保压压力、注射时间和熔体温度,两成像质量目标具有竞争关系,无法同时达到最优值。据此,采用融合空间信息注意力机制的卷积神经网络建立了成像质量目标可靠预测模型,运用快速精英非支配排序遗传算法并结合线性加权法获得了最佳工艺参数组。相较于初始成型条件,优化后的成像质量目标相移降低了64.82%,相移分布均匀度提高了5.76%,有效地提升了透镜的质量。 展开更多
关键词 注射压缩成型 聚合物透镜 多目标优化 卷积神经网络 快速精英非支配排序遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ算法的柔性气缸弹射影响参数优化研究
6
作者 王卓越 杨宝生 +2 位作者 姜毅 杨哩娜 王汉平 《振动与冲击》 北大核心 2025年第9期99-108,共10页
柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽,能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹... 柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽,能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹射过载并提升弹射速度。基于代理模型理论,建立柔性气缸弹射代理模型,对代理模型进行精度分析,在此基础上,深入探究了充气孔直径、开启时间以及开启时长这三个关键参数对弹射动力学响应的具体影响。结合NSGA-Ⅱ(non-dominated sorting genetic algorithm II)优化算法,对弹射模型的相关参数进行了优化处理。研究结果显示:采用粒子法的有限元模型能够精确模拟柔性气缸的弹射过程;进一步的分析表明,相较于响应面模型Kriging代理模型在替代柔性气缸有限元模型方面展现出了更高的准确性。针对初始设计点,提出了通过NSGA-Ⅱ算法优化的均衡设计方案,该方案成功地将弹射速度提升了4.79%,同时将弹射过载降低了21.70%;并针对弹射速度与最大过载的优化过程给出了优化方案。 展开更多
关键词 粒子法 柔性气缸弹射 Kriging代理模型 nsga-算法
在线阅读 下载PDF
“双碳”目标下基于改进型NSGA-Ⅱ的港口作业调度优化算法
7
作者 刘树东 吴昊 +1 位作者 丛佳 顾播宇 《计算机应用》 北大核心 2025年第6期1945-1953,共9页
随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素... 随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素,构建最小化碳排放成本和码头运营成本的作业调度优化模型,并提出一种“双碳”目标下基于改进型非支配排序遗传算法(NSGA-Ⅱ)(E-NSGA-Ⅱ)的港口作业调度优化算法。首先,调整算法的编码策略、种群初始化方法和交叉变异操作;其次,设计不可行解的基因修复算子,并引入自适应交叉与变异概率机制。实验结果表明,与FCFS(First Come First Service)调度算法相比,所提算法在模型求解中的总成本下降了7.9%,碳排放成本下降了19.7%,码头运营成本下降了6.5%。以上研究结果丰富了多目标优化算法和港口作业调度理论,并为港口企业实现绿色调度、降低运营成本和提升经济效益提供了有力支持。 展开更多
关键词 “双碳”目标 碳排放 码头运营成本 港口作业调度优化算法 nsga-
在线阅读 下载PDF
基于DQN的改进NSGA-Ⅱ求解多目标柔性作业车间调度问题
8
作者 郑国梁 张朝阳 +1 位作者 吉卫喜 于俊杰 《现代制造工程》 北大核心 2025年第9期1-11,共11页
提出了一种基于深度Q网络(Deep Q-Network,DQN)改进的非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ),以解决以最小化最大完工时间和最小化能源消耗为目标的多目标柔性作业车间调度问题(Multi-Objective Flexi... 提出了一种基于深度Q网络(Deep Q-Network,DQN)改进的非支配排序遗传算法(Non-dominated Sorting Genetic AlgorithmⅡ,NSGA-Ⅱ),以解决以最小化最大完工时间和最小化能源消耗为目标的多目标柔性作业车间调度问题(Multi-Objective Flexible Job shop Scheduling Problem,MO-FJSP)。通过在DQN算法中定义马尔可夫决策过程和奖励函数,考虑选定设备对完工时间和能源消耗的局部及全局影响,提高了NSGA-Ⅱ初始种群的质量。改进的NSGA-Ⅱ通过精英保留策略确保运行过程中的种群多样性,并保留了进化过程中优质的个体。将DQN算法生成的初始解与贪婪算法生成的初始解进行对比,验证了DQN算法在生成初始解方面的有效性。此外,将基于DQN算法的改进NSGA-Ⅱ与其他启发式算法在标准案例和仿真案例上进行对比,证明了其在解决MO-FJSP方面的有效性。 展开更多
关键词 深度Q网络算法 多目标柔性作业车间调度问题 奖励函数 非支配排序遗传算法
在线阅读 下载PDF
航班波运行下多目标时隙二次分配的改进NSGA-Ⅱ算法
9
作者 陈可嘉 陈锦涛 《运筹与管理》 北大核心 2025年第3期23-29,I0009-I0012,共7页
对枢纽机场中航班波运行模式下的时隙二次分配问题进行协同决策,能够有效地提高机场的运行效率并降低航班延误所造成的航空公司及旅客的成本损失。本文首先以旅客总延误成本最小化作为效率性目标,引入经济学中的基尼系数作为公平性目标... 对枢纽机场中航班波运行模式下的时隙二次分配问题进行协同决策,能够有效地提高机场的运行效率并降低航班延误所造成的航空公司及旅客的成本损失。本文首先以旅客总延误成本最小化作为效率性目标,引入经济学中的基尼系数作为公平性目标,构建双目标时隙二次分配模型。其次,设计改进的非支配排序遗传算法(NSGA-II)获得Pareto解集,其中引入重复个体控制策略及邻域搜索策略来增强算法的寻优性能。最后,以某枢纽机场的航班运行数据作为算例,实验证明改进的NSGA-II算法在解的个数和质量上明显更优。该研究结果可以为航空公司减少航班延误提供理论和技术支持。 展开更多
关键词 时隙二次分配 航班波 协同决策 多目标优化 改进非支配排序遗传算法
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的航空器滑行路径多目标优化
10
作者 钟庆伟 唐浩铭 +3 位作者 庾映雪 张永祥 姚俊杰 潘明思语 《科学技术与工程》 北大核心 2025年第20期8737-8744,共8页
随着全球航空业的快速发展,机场场面航空器滑行管理难度增加,如何在保障安全和提升效率的同时减少对环境的影响变得尤为重要。针对该问题,以预防滑行路径冲突为基础约束条件,以滑行时间最短和二氧化碳(carbon dioxide,CO_(2))排放量最... 随着全球航空业的快速发展,机场场面航空器滑行管理难度增加,如何在保障安全和提升效率的同时减少对环境的影响变得尤为重要。针对该问题,以预防滑行路径冲突为基础约束条件,以滑行时间最短和二氧化碳(carbon dioxide,CO_(2))排放量最小为优化目标建立混合整数线性优化模型,并设计非支配排序遗传算法Ⅱ(non-dominated sorting genetic algorithmⅡ,NSGA-Ⅱ)进行动态求解。最后,以中国某枢纽机场为算例背景,借助Python语言实现NSGA-Ⅱ算法,并与商业优化求解器Gurobi进行对比。计算结果表明:航空器数量为14架次时,与优化前相比,总滑行时间减少约17.46%,CO_(2)排放量降低约18.35%;NSGA-Ⅱ算法得到的可行解与Gurobi所求最优解间的距离为1.083%,但NSGA-Ⅱ的求解时间相对减少95.0%。同时,通过多个算例测试表明,NSGA-Ⅱ算法在处理大规模多目标路径优化问题时具有显著优势。所提出的优化方案可有效提升机场场面运营效率并减少CO_(2)排放。 展开更多
关键词 滑行路径优化 多目标优化 非支配排序遗传算法(nsga-) 数学求解器 动态优化 CO_(2)排放
在线阅读 下载PDF
基于改进NSGA-Ⅱ的多目标车间物料配送方法 被引量:1
11
作者 詹燕 陈洁雅 +5 位作者 江伟光 鲁建厦 汤洪涛 宋新禹 许丽丽 刘赛淼 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2510-2519,共10页
针对车间物料配送效率低的问题,建立以配送路径最短和时间窗惩罚值最小为目标的物料配送多目标优化模型,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的混合优化算法INSGA-Ⅱ.该算法采用密度峰值聚类(DPC)初始化种群,缩减问题规模;在NSGA-... 针对车间物料配送效率低的问题,建立以配送路径最短和时间窗惩罚值最小为目标的物料配送多目标优化模型,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的混合优化算法INSGA-Ⅱ.该算法采用密度峰值聚类(DPC)初始化种群,缩减问题规模;在NSGA-Ⅱ遗传操作阶段,采用差分进化(DE)算法,避免陷入局部最优;通过变异向量的差分操作与部分映射交叉加快迭代速度,同时提高种群多样性.通过求解不同基准函数与不同规模算例验证算法的有效性,结果表明,与传统NSGA-Ⅱ算法相比,改进算法具有更优帕累托前沿,同时算法结果的均匀性和多样性更好,求解时间更短.研究结果表明,新算法生成的结果更优;相比NSGA-Ⅱ算法、多目标粒子群算法(MOPSO),生成的总配送距离减少26.65%,总时间窗惩罚减少32.5%,能有效提高车间物料的配送效率. 展开更多
关键词 物料配送 多目标优化 密度峰值聚类 非支配排序遗传 差分进化
在线阅读 下载PDF
基于NSGA-Ⅱ的滑油泵叶轮结构优化设计 被引量:3
12
作者 孙永国 金欣 +2 位作者 薛冬 单建平 石晓春 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期559-569,共11页
滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,... 滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,利用NSGA-Ⅱ算法对滑油泵叶轮几何参数进行寻优,对优化前后的滑油泵效率、扬程进行对比分析。采用CFD流体仿真及实验方法对优化结果进行对比验证。结果表明:所选优化参数对滑油泵性能有较大影响,优化后的滑油泵叶片位置附近流动更加平稳,高低压区域过渡平缓,能量损失更小,且降低了汽蚀发生的可能性;优化后的滑油泵设计点扬程提高2.6 m,效率提高2.86%。 展开更多
关键词 滑油泵叶轮 优化设计 非支配排序遗传算法nsga- 扬程 效率
在线阅读 下载PDF
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究 被引量:1
13
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
基于改进NSGA-Ⅲ的多Delta机器人协作食品动态分拣研究 被引量:1
14
作者 郭凌岑 王海晖 +1 位作者 赵小霏 王思璐 《食品与机械》 北大核心 2025年第7期72-77,共6页
[目的]探索提升多Delta机器人协作的食品动态分拣准确率和效率的方法。[方法]基于多Delta机器人食品自动化生产线,提出一种结合动态目标跟踪、多机器人任务分类和机器人轨迹规划的多Delta机器人协作食品动态分拣方法。通过精确计算传送... [目的]探索提升多Delta机器人协作的食品动态分拣准确率和效率的方法。[方法]基于多Delta机器人食品自动化生产线,提出一种结合动态目标跟踪、多机器人任务分类和机器人轨迹规划的多Delta机器人协作食品动态分拣方法。通过精确计算传送带移动距离,并结合相机实时采集的目标坐标信息,实现对食品动态位置的精准捕捉。通过集中控制分配策略,根据各机器人的工作状态与任务优先级,科学合理地进行任务分配。通过改进的第三代非支配排序遗传算法和5次非均匀有理B样条曲线实现多目标综合最优轨迹规划。并通过搭建试验平台对所提方法的性能进行全面验证。[结果]试验所提多Delta机器人协作分拣方法具有优异的性能。在实际运行中,该方法实现了食品分拣的高精度、高效率与高稳定性,分拣成功率为100%,分拣平均时间为0.231 s,平均运行冲击为4.45×10^(3)(°)/s^(3),平均运行能耗为2.45×10^(2)(°)/s^(2),有效满足了食品生产对高效、稳定作业的需求。[结论]通过优化现有动态分拣方法并结合多机器人可以实现食品的准确、高效和稳定分拣。 展开更多
关键词 食品自动化生产线 多Delta机器人 动态目标跟踪 第三代非支配排序遗传算法 非均匀有理B样条
在线阅读 下载PDF
基于代理模型和NSGA-Ⅱ的超高强钢电阻点焊工艺参数多目标优化 被引量:7
15
作者 卓文波 谭国笔 +4 位作者 陈秋任 侯泽宏 王显会 韩维建 黄理 《焊接学报》 EI CAS CSCD 北大核心 2024年第4期20-25,I0004,共7页
为寻求超高强钢电阻点焊时最佳的焊接工艺参数,开展正交试验法设计三因素五水平的平板搭接点焊试验,以焊接时间、焊接电流和电极压力为可调的工艺参数,将熔核直径、压痕深度、拉剪强度及飞溅情况作为焊接接头质量评价指标.基于高斯过程... 为寻求超高强钢电阻点焊时最佳的焊接工艺参数,开展正交试验法设计三因素五水平的平板搭接点焊试验,以焊接时间、焊接电流和电极压力为可调的工艺参数,将熔核直径、压痕深度、拉剪强度及飞溅情况作为焊接接头质量评价指标.基于高斯过程回归和BP神经网络建立起焊接工艺参数与焊接接头质量评价指标之间关系的代理模型,训练的结果显示模型精度很高.最后利用带精英策略的非支配排序的遗传算法NSGA-Ⅱ实现多目标优化,得到各评价指标之间的最优pareto解集.经验证,各评价模型的相对误差值都很小.结果表明,该优化方法有较好的预测效果和稳定性.通过使用较少的试验数据,建立优化模型的方法对电阻点焊及其它焊接领域最佳焊接工艺参数的选取具有重要的指导价值. 展开更多
关键词 多目标优化 电阻点焊工艺参数 代理模型 非支配排序遗传算法
在线阅读 下载PDF
面向多行程取送货车辆路径问题的混合NSGA-Ⅱ 被引量:5
16
作者 李建强 何舟 《计算机应用》 CSCD 北大核心 2024年第4期1187-1194,共8页
针对多行程取送货车辆路径问题(VRP)收敛性与多样性相互制约的问题,提出一种融合自适应大邻域搜索(ALNS)算法和自适应邻域选择(ANS)的混合快速非支配排序遗传算法(NSGA-Ⅱ-ALNS-ANS)。首先,考虑初始解对算法收敛速度的影响,提出一种改... 针对多行程取送货车辆路径问题(VRP)收敛性与多样性相互制约的问题,提出一种融合自适应大邻域搜索(ALNS)算法和自适应邻域选择(ANS)的混合快速非支配排序遗传算法(NSGA-Ⅱ-ALNS-ANS)。首先,考虑初始解对算法收敛速度的影响,提出一种改进的后悔插入法以获得高质量初始解;其次,结合取送货问题特性,设计多组破坏和修复算子,以及多种邻域结构,提高算法的全局搜索能力和局部搜索能力;最后,设计基于随机采样的最佳拟合下降(BFD)算法与高效的可行解评价标准,生成路径分配方案。采用不同规模的标准公开算例进行仿真实验,与模因算法(MA)相比,所提算法的最优解质量提升了27%。实验结果表明,所提算法可快速得到满足多重约束的高质量车辆多行程路径分配方案,并在收敛性与多样性上优于对比算法。 展开更多
关键词 路径规划 车辆路径问题 取送货 多行程 多目标优化 nsga-
在线阅读 下载PDF
基于NSGA-Ⅱ与CFD的H型垂直轴风力机翼型优化设计
17
作者 张念 郑凯 +1 位作者 董兴辉 柳亦兵 《现代制造工程》 CSCD 北大核心 2024年第12期130-136,共7页
为解决因垂直轴风力机叶片的传统配比式研究灵活性不足而导致产生局部最优解的问题,使垂直轴风力机在应对复杂多变的实际问题时有更佳的转化效率,针对在役翼型的升力系数、阻力系数等多项气动性能指标进行优化,以提高空气动力学性能。... 为解决因垂直轴风力机叶片的传统配比式研究灵活性不足而导致产生局部最优解的问题,使垂直轴风力机在应对复杂多变的实际问题时有更佳的转化效率,针对在役翼型的升力系数、阻力系数等多项气动性能指标进行优化,以提高空气动力学性能。通过采用带精英策略的快速非支配排序遗传算法(Non-dominated Sorting Genetic Algorithms-Ⅱ,NSGA-Ⅱ)进行寻优并结合翼型参数化得到优化翼型,然后对优化翼型各气动性能指标进行仿真验证。结果表明:优化翼型空气动力学性能有了显著提升,升阻比提高了20.85%、升力系数提高了17.35%且阻力系数降低了2.91%。验证结果表明:优化翼型较原始翼型风能转化效率有了一定提升,在低风速下,优化翼型所对应的垂直轴风力机有更良好的自启动能力且适应的风速更大、风能转化效率更高。此优化设计将带精英策略的快速非支配排序遗传算法与计算流体动力学(Computational Fluid Dynamics,CFD)仿真相结合,可为垂直轴风力机风能转化效率的提升研究提供新的思路。 展开更多
关键词 垂直轴风力机 翼型参数化 非支配排序遗传算法 精英策略 空气动力学性能
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的RV减速器参数多目标优化研究 被引量:1
18
作者 杨昊霖 王茹芸 +2 位作者 罗利敏 贡林欢 楼应侯 《机电工程》 CAS 北大核心 2024年第4期651-658,共8页
旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究... 旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究。首先,研究了摆线轮平均压力角、传动效率和传动机构体积三者的相关参数之间的关系;然后,以此为优化目标,在摆线轮标准齿廓方程的基础上建立了多目标优化数学模型(该模型采用了基于非支配占优排序遗传学算法(NSGA-Ⅱ)改进了交叉算子系数生成的改进NSGA-Ⅱ算法);通过模型求解得到了帕累托最优解集,根据模糊集合理论的相关方法选取了最优解;最后,以某公司220-BX型RV减速器为例,进行了优化设计,建立了3D模型后进行了有限元分析,并加工出实验样机,进行了传动效率对比实验。实验结果表明:摆线轮平均压力角减小了7.19%,体积减小了11.1%,传动效率提高了4.9%。研究结果表明:该模型交互性强,能提高设计效率并节省设计开销,可为实际RV减速器工程优化设计提供参考。 展开更多
关键词 机械传动 旋转矢量(RV)减速器 改进非支配占优排序遗传学算法(nsga-) 多目标优化 平均传动压力角 传动效率
在线阅读 下载PDF
基于NSGA-Ⅱ的智能化电铲多目标最优挖掘轨迹规划
19
作者 陈广玲 张天赐 +2 位作者 付涛 王林涛 宋学官 《现代制造工程》 CSCD 北大核心 2024年第2期142-149,共8页
为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使... 为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使用高次多项式对挖掘轨迹进行插值,将挖掘轨迹寻优问题转化为多项式系数寻优问题,最后,以挖掘时间最短及单位体积物料的挖掘能耗最小作为优化目标,以电机性能与挖掘过程中几何条件等作为约束,利用多目标优化平台PlatEMO,将NSGA-Ⅱ作为多目标优化算法,指定待优化问题的目标函数及约束函数,获取到多目标优化Pareto最优解集,基于决策偏好设置权重并根据TOPSIS法获取最优解,得到多目标最优挖掘轨迹规划结果。结果表明,优化后挖掘轨迹满足实时节能的挖掘要求。 展开更多
关键词 智能化电铲 动力学模型 非支配排序遗传算法 挖掘轨迹规划 多目标优化
在线阅读 下载PDF
地物分类驱动的多目标高光谱波段选择NSGA-Ⅲ改进算法
20
作者 袁博 《光谱学与光谱分析》 北大核心 2025年第12期3524-3532,共9页
针对非支配排序遗传算法Ⅲ(NSGA-Ⅲ)在高光谱波段选择中存在的初始种群随机性强、全局收敛性与局部多样性不平衡、局部搜索效率低的问题,提出一种地物分类驱动的多目标高光谱波段选择NSGA-Ⅲ改进算法(INSGA-Ⅲ)。首先,融合拉丁超立方采... 针对非支配排序遗传算法Ⅲ(NSGA-Ⅲ)在高光谱波段选择中存在的初始种群随机性强、全局收敛性与局部多样性不平衡、局部搜索效率低的问题,提出一种地物分类驱动的多目标高光谱波段选择NSGA-Ⅲ改进算法(INSGA-Ⅲ)。首先,融合拉丁超立方采样(LHS)与参考点引导机制,生成兼顾搜索空间覆盖性与目标空间聚焦性的高质量初始种群;其次,设计基于自适应旋转森林(ARF)的分类精度驱动项与基于皮尔逊相关系数的波段相关性惩罚项,构建多目标适应度函数,平衡全局探索与局部开发能力;最后,引入粒子群优化(PSO)的协同搜索机制,提升局部搜索效率。实验基于Indian Pines(农业场景)、Pavia University(城市地物)、Salinas(植被监测)及Botswana(矿物识别)四类高光谱数据集,选取广泛应用的顺序前向选择(SFS)、竞争性自适应重加权采样(CARS)、多目标粒子群优化(MOPSO)、基于分解的多目标进化算法(MOEA/D)及原始NSGA-Ⅲ算法作为基准算法,验证INSGA-Ⅲ算法的普适优势。实验结果表明,在波段选择性能方面,INSGA-Ⅲ的信息熵与波段相关性指标相较于全部基准算法的均值,信息熵指标提升8.5%,波段相关性指标降低9.7%(冗余度减少)(p<0.01);在SVM分类任务中,INSGA-Ⅲ的OA与Kappa系数分别领先全部基准算法的均值10.3%与11.6%(p<0.01);算法效率方面,INSGA-Ⅲ达到90%帕累托前沿近似度的迭代次数较NSGA-Ⅲ减少32%,且在添加25%高斯噪声的数据中(10次重复实验),分类精度波动范围(标准差±1.23%)显著低于基准算法均值(±4.2%)。该算法通过平衡信息量、冗余度与分类精度目标,可为农业作物监测、城市地物分类及矿区矿物识别等任务提供高效、鲁棒的波段选择方案,显著降低高光谱数据处理的维度与成本。 展开更多
关键词 非支配排序遗传算法Ⅲ 多目标高光谱波段选择 拉丁超立方采样 自适应旋转森林算法 粒子群优化
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部