为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一...为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一次循环的输入并更新参数,然后采用增广拉格朗日乘子法和交替方向乘子法进行循环求解,经过多次迭代,最终得到的去噪图像包含较多的细节信息。在基于全变分的图像去噪方法中,对添加不同标准差大小的高斯白噪声的测试图像和视频进行实验。实验结果表明,所提算法在视觉性能和客观评价指标方面均优于对比算法。展开更多
文摘高光谱图像(Hyperspectral Image,HSI)在采集的过程中会被大量混合噪声污染,会影响遥感图像后续应用的性能,因此从混合噪声中恢复干净的HSI成为了重要的预处理过程。在本文中,提出了一种基于非凸低秩张量分解和群稀疏总变分正则化的高光谱混合噪声图像恢复模型;一方面,采用对数张量核范数来逼近HSI的低秩特性,可以利用高光谱数据固有的张量结构,同时减少对较大奇异值的收缩以保留图像更多细节特征;另一方面,采用群稀疏总变分正则化来增强HSI的空间稀疏性和相邻光谱间的相关性。并采用ADMM(Alternating Direction Multiplier Method)算法求解,实验证明该算法易于收敛。在模拟和真实的高光谱图像实验中,与其他方法相比,该方法在去除HSI混合噪声方面具有更好的性能。
文摘随着高分辨率对地观测要求的不断提高,合成孔径雷达(Synthetic Aperture Radar,SAR)的应用将越来越广泛。针对高分辨率SAR成像存在数据量大、存储难度高、计算时间长等问题,目前常用的解决方法是在SAR成像模型中引入压缩感知(Compressed Sensing,CS)的方法降低采样率和数据量。通常使用单一的正则化作为约束条件,可以抑制点目标旁瓣,实现点目标特征增强,但是观测场景中可能存在多种目标类型,因此使用单一正则化约束难以满足多种特征增强的要求。本文提出了一种基于复合正则化的稀疏高分辨SAR成像方法,通过压缩感知降低数据量,并使用多种正则化的线性组合作为约束条件,增强观测场景中不同类型目标的特征,实现复杂场景中高分辨率对地观测的要求。该方法在稀疏SAR成像模型中引入非凸正则化和全变分(Total Variation,TV)正则化作为约束条件,减小稀疏重构误差、增强区域目标的特征,降低噪声对成像结果的影响,提高成像质量;采用改进的交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现复合正则化约束的求解,减少计算时间、快速重构图像;使用方位距离解耦算子代替观测矩阵及其共轭转置,进一步降低计算复杂度。仿真和实测数据实验表明,本文所提算法可以对点目标和区域目标进行特征增强,减小计算复杂度,提高收敛性能,实现快速高分辨的图像重构。
文摘为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一次循环的输入并更新参数,然后采用增广拉格朗日乘子法和交替方向乘子法进行循环求解,经过多次迭代,最终得到的去噪图像包含较多的细节信息。在基于全变分的图像去噪方法中,对添加不同标准差大小的高斯白噪声的测试图像和视频进行实验。实验结果表明,所提算法在视觉性能和客观评价指标方面均优于对比算法。