期刊文献+
共找到233篇文章
< 1 2 12 >
每页显示 20 50 100
基于彩色V-Ⅰ轨迹特征和边缘机器学习非侵入式负荷识别方法
1
作者 陆玲霞 孟繁举 +2 位作者 于淼 任沁源 包哲静 《工程科学与技术》 北大核心 2025年第5期134-141,共8页
非侵入式负荷识别方法作为分析用户用电行为的主要途径,对开展能耗监测、实现用电安全评估具有重要意义。针对传统基于V-I轨迹特征的非侵入式负荷识别方法存在特征重叠和无法识别未知负荷的问题,提出一种基于彩色V-I轨迹特征和轻量级孪... 非侵入式负荷识别方法作为分析用户用电行为的主要途径,对开展能耗监测、实现用电安全评估具有重要意义。针对传统基于V-I轨迹特征的非侵入式负荷识别方法存在特征重叠和无法识别未知负荷的问题,提出一种基于彩色V-I轨迹特征和轻量级孪生网络的非侵入式负荷识别方法。首先,通过负荷电压电流数据构建具有方向信息的彩色V-I轨迹图像。然后,利用孪生网络计算待识别负荷的V-I轨迹图像和负荷特征库中V-I轨迹图像之间的相似度,以完成初步识别。随后,计算电流谐波特征之间的余弦距离,与阈值对比完成最终负荷识别。在以STM32MP1微处理器为核心的嵌入式Linux系统上,使用实验室电器负荷进行了实物验证。结果表明:彩色V-I轨迹能更详细地反映负荷特征,提高负荷识别准确率,并且由于改进的人工智能模型比较轻量化,对计算量需求大大减小,可以在嵌入式设备端对负荷特征库进行动态实时在线更新,轻松完成模型再训练。与依赖服务器的传统算法相比,无需返回PC或服务器重新训练模型并重新移植模型到嵌入式设备端。该方法仅依赖嵌入式终端便可准确识别未知负荷,避免在出现较多未知负荷后识别准确率下降,保证了负荷识别效果。系统运算一次负荷识别时间为0.2 s左右,可以满足实时性要求,具有重要的研究价值和实用性。 展开更多
关键词 非侵入式负荷识别 边缘机器学习 孪生网络 嵌入式LINUX系统
在线阅读 下载PDF
热网FDI攻击的非侵入式检测方法
2
作者 刘鑫蕊 张修宇 +2 位作者 吴泽群 王睿 孙秋野 《控制理论与应用》 北大核心 2025年第7期1265-1274,共10页
针对热网易受网络攻击影响且惯性大的问题,为提高热网攻击检测的快速性和准确性,本文首次提出了一种能够放大攻击带来的状态量偏差的非侵入式在线检测方法,该方法首先将居住人热行为归纳为黑盒模型,将房屋和散热器归纳为白盒模型,通过... 针对热网易受网络攻击影响且惯性大的问题,为提高热网攻击检测的快速性和准确性,本文首次提出了一种能够放大攻击带来的状态量偏差的非侵入式在线检测方法,该方法首先将居住人热行为归纳为黑盒模型,将房屋和散热器归纳为白盒模型,通过白盒与黑盒组成的灰盒模型来计算室内热平衡状态,其次以室内温度为输入/散失热量计算的中间量,放大攻击带来的系统状态量偏差,最后通过多重匹配状态预测方法进行攻击检测.为验证所提方法的有效性,采用巴厘岛热网模型进行仿真实验,与传统的检测方法相比,本文所提方法可以有效放大攻击带来的状态量偏差,检测速度和检测率均更高. 展开更多
关键词 FDI 网络攻击 非侵入式检测 灰盒模型 热网
在线阅读 下载PDF
基于改进通道注意力优化变分自编码器的居民空调负荷辨识
3
作者 王凌云 唐涛 +2 位作者 鲍刚 阮胜冬 张涛 《仪器仪表学报》 北大核心 2025年第5期251-263,共13页
居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进... 居民空调负荷的准确辨识是挖掘其调控潜力和实现需求响应的关键。针对目前居民空调功率求解方法的精度不足和计算复杂问题,故提出一种基于变分自编码器(VAE)和改进高效通道注意力机制(ECA)的居民空调负荷非侵入式辨识神经网络模型。改进ECA采用结合全局平均池化与全局最大池化的双池化策略,既捕获整体统计信息又突出局部显著响应。借助压缩-重构机制,在降维后利用快速动态卷积核自适应捕捉局部通道交互信息,有效聚焦关键信息,为通道赋予合理权重;将改进ECA集成在VAE解码器中,增强模型对空调负荷的特征重构能力;模型进一步引入多任务学习框架,联合优化功率分解与状态识别任务,实现任务间信息共享和互补,从而提高整体辨识精度。同时,利用输出模块和后处理状态阈值约束,有效抑制非空调负荷的干扰。最后,在真实居民用电数据集上进行实验验证。实验结果表明,相较于两个对比模型,模型在3个地区所有居民功率分解的平均绝对误差(MAE)均值分别提升59.71%和9.22%,空调状态识别F1值达84.58%。消融实验表明,改进ECA使其中两个地区功率分解MAE分别降低56.23%和12.47%,多任务学习框架进一步推动辨识精度提升3.17%和5.90%。所提出的少量侵入式测量方案以30%用户侵入式量测数据训练,在保证模型准确性的同时,减少对用户数据的依赖,具有较强的应用潜力。 展开更多
关键词 居民空调负荷 变分自编码器 非侵入式负荷监测 通道注意力 多任务学习
在线阅读 下载PDF
基于非侵入式负荷监测技术的智慧用能实验平台设计
4
作者 刘博 栾文鹏 +3 位作者 宋关羽 张金江 张建锋 秦超 《实验室研究与探索》 北大核心 2025年第8期72-76,共5页
为满足智能电网负荷状态监测相关的教学与科研需求,基于非侵入式负荷监测技术设计了智慧用能实验平台。该实验平台采用云-端协同架构,由实验操作界面、数据服务器集群和零碳智慧小屋三部分构成,并具有拓扑灵活、扩展性强、重构性强的特... 为满足智能电网负荷状态监测相关的教学与科研需求,基于非侵入式负荷监测技术设计了智慧用能实验平台。该实验平台采用云-端协同架构,由实验操作界面、数据服务器集群和零碳智慧小屋三部分构成,并具有拓扑灵活、扩展性强、重构性强的特点,同时支持多种分布式电源与负荷设备灵活接入,平台可开展非侵入式负荷状态感知实验、家庭能量管理实验及低压故障电弧检测实验。围绕该实验平台,可进一步设计多种理论教学实验和科学研究实验,助力新型电力系统领域卓越工程师的培养。 展开更多
关键词 智慧用能 非侵入式负荷监测 用户能量管理 实验平台
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
5
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
面向边缘计算的轻量级非侵入式负荷分解模型研究
6
作者 叶灿燊 骆德汉 何家峰 《电测与仪表》 北大核心 2025年第5期140-148,共9页
针对目前基于深度学习的非侵入式负荷分解模型难以在计算资源有限的边缘端部署的问题,文中提出一种基于编解码器结构的轻量级非侵入式负荷分解模型。该模型通过引入注意力机制,分别计算空间注意力和改进后的通道注意力,提高负荷分解的... 针对目前基于深度学习的非侵入式负荷分解模型难以在计算资源有限的边缘端部署的问题,文中提出一种基于编解码器结构的轻量级非侵入式负荷分解模型。该模型通过引入注意力机制,分别计算空间注意力和改进后的通道注意力,提高负荷分解的准确性。另外,文中对不同解码器的设计进行研究,利用深度可分离卷积改进上采样层中的残差块,减少卷积层中的卷积核个数,使得模型在保证良好的负荷分解性能的同时,拥有更少的参数量和计算量。文中利用公开数据集UK-DALE进行测试,验证所提模型的负荷分解性能和在边缘端部署的可行性。 展开更多
关键词 非侵入式负荷分解 注意力机制 编解码器 边缘计算
在线阅读 下载PDF
工业非介入式负荷监测研究综述
7
作者 黄颖祺 颜钟宗 +1 位作者 郝芃斐 温和 《中国测试》 北大核心 2025年第1期11-23,共13页
非介入式负荷监测(NILM)能实时获取工业设备负荷状态和能耗信息,为工业节能提供重要数据支撑。NILM在居民负荷监测中得到较好的应用,但在工业应用中遇到挑战,主要原因是:1)工业数据涉及行业隐私,公开的工业NILM数据集稀缺;2)工业设备运... 非介入式负荷监测(NILM)能实时获取工业设备负荷状态和能耗信息,为工业节能提供重要数据支撑。NILM在居民负荷监测中得到较好的应用,但在工业应用中遇到挑战,主要原因是:1)工业数据涉及行业隐私,公开的工业NILM数据集稀缺;2)工业设备运行特性和工作模式复杂多变。该文从工业NILM数据集、工业负荷特征的提取和选择方法、工业负荷辨识与电量分解方法等方面综述了工业NILM技术的发展现状。在此基础上,对工业NILM模型的优化、适应多行业负荷辨识模型迁移、大规模负荷辨识模型轻量化、负荷辨识评价标准等方面进行展望。该文的工作对推动工业非介入式负荷监测的研究和应用有一定的参考意义。 展开更多
关键词 工业 非介入式负荷监测 负荷分解 综述
在线阅读 下载PDF
基于GCN-BiLSTM的非侵入式负荷分解
8
作者 徐健 胡博 +1 位作者 邢作霞 张鹏飞 《南方电网技术》 北大核心 2025年第6期133-142,共10页
近年来,以深度学习为基础的负荷分解方法得到了广泛应用。但是,目前的研究主要局限于传统欧氏空间序列的输入,难以精确刻画电气设备工作过程中的时序相关性,从而降低了对电气设备的解析精度。此外,家电开关动作可能在时间序列数据中产... 近年来,以深度学习为基础的负荷分解方法得到了广泛应用。但是,目前的研究主要局限于传统欧氏空间序列的输入,难以精确刻画电气设备工作过程中的时序相关性,从而降低了对电气设备的解析精度。此外,家电开关动作可能在时间序列数据中产生长距离影响,但现有模型很少考虑负荷数据的长距离依赖问题。针对上述问题,提出了一种基于图卷积网络(graph convolutional network,GCN)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)的非侵入式负荷分解模型。该方法基于图理论将总负荷序列转换为包含节点和边的图结构数据,充分考虑节点之间的相关性特征,并利用GCN进行特征提取。同时,引入BiLSTM神经网络以处理长时间序列数据的局限性。通过算例分析验证了所提模型在分解精度和效果上显著优于传统方法。 展开更多
关键词 非侵入式负荷分解 深度学习 图卷积神经网络 BiLSTM
在线阅读 下载PDF
基于多阶段数据递推分析的用户用电行为特性挖掘方法
9
作者 李延珍 王海鑫 +3 位作者 杨子豪 马一鸣 杨俊友 陈哲 《电机与控制学报》 北大核心 2025年第2期35-46,共12页
用户用电行为特性分析为构建居民用户的家庭智能用电策略提供了可靠的理论基础和数据支撑。为提取有效直观负荷用电行为特征,提出一种基于多阶段数据递推分析的用户用电行为特性挖掘方法。该方法第一阶段构建了基于混合深度学习的非侵... 用户用电行为特性分析为构建居民用户的家庭智能用电策略提供了可靠的理论基础和数据支撑。为提取有效直观负荷用电行为特征,提出一种基于多阶段数据递推分析的用户用电行为特性挖掘方法。该方法第一阶段构建了基于混合深度学习的非侵入式负荷分解模型,将用户集中数据分解为电器设备用电数据分量集合;第二阶段提出了基于卡尔曼滤波与广义似然比检验的事件检测方法,对电器设备的启停状态进行了判定;第三阶段量化用户用电行为特性,并提出了基于核密度估计的电器设备差异化时域概率模型。以公开数据UK-DALE为对象展开仿真验证,实验结果表明,该方法能有效捕捉用户细粒度能耗数据,构建智能电表与用户用电特性之间的桥梁,为优化管理及集群调控用户负荷提供有效手段。 展开更多
关键词 非侵入式负荷监测 深度学习 用电特性分析 事件检测 多阶段递推 核密度估计
在线阅读 下载PDF
基于单序列到多序列的轻量级非侵入式负荷监测
10
作者 陈文权 吴青华 +1 位作者 季天瑶 李梦诗 《电测与仪表》 北大核心 2025年第1期167-175,共9页
非侵入式负荷监测(non-intrusive load monitoring,NILM)能让用户以一种低成本的方式获取家庭中各用电器的耗电情况,有利于推动实现碳中和,提升需求侧管理能力。针对一般NILM算法面对的负荷分解误差和模型计算成本间的矛盾,提出了一种... 非侵入式负荷监测(non-intrusive load monitoring,NILM)能让用户以一种低成本的方式获取家庭中各用电器的耗电情况,有利于推动实现碳中和,提升需求侧管理能力。针对一般NILM算法面对的负荷分解误差和模型计算成本间的矛盾,提出了一种基于单序列到多序列的轻量级NILM模型。模型采取基于深度可分离卷积的全卷积结构,并利用卷积核不同通道的特征提取能力实现了多输出,极大减少了模型的参数量和计算时间;然后通过引入通道注意力机制,为不同通道的特征赋予权重,降低模型的负荷分解误差。在数据处理上,利用模糊C均值聚类将电器分为单运行状态和多运行状态两类,分别采取功率估计和状态估计两种方式以降低分解误差。模型在REFIT数据集上进行了验证,实验表明模型能在大幅度减少计算成本的同时保持较低的分解误差。 展开更多
关键词 非侵入式负荷监测 多输出 深度可分离卷积 通道注意力机制 模糊C均值聚类
在线阅读 下载PDF
基于VMD和PSO-SVM的非侵入式负荷识别方法
11
作者 杨锐 邹晓松 +3 位作者 熊炜 袁旭峰 郑华俊 刘斌 《电测与仪表》 北大核心 2025年第5期111-119,共9页
非侵入式负荷监测是智能用电的未来发展趋势,其中负荷的分解与辨识是实现该技术的重要环节。鉴于变分模态分解(variational mode decomposition,VMD)在信号处理方面的优势,提出一种基于VMD-FastICA(variational mode decomposition and ... 非侵入式负荷监测是智能用电的未来发展趋势,其中负荷的分解与辨识是实现该技术的重要环节。鉴于变分模态分解(variational mode decomposition,VMD)在信号处理方面的优势,提出一种基于VMD-FastICA(variational mode decomposition and fast independent component analysis)和VMD-Entropy-PSOSVM(variational mode decamposition-entropy-particle swanm optimization fo optimizing support vector machines)的负荷识别算法。该方法利用VMD对总负荷功率信号进行分解得到多个模态分量(intrinsic mode functions,IMF),再依据峭度准则和奇异值分解对分解后的模态分量重构,将单通道盲源分离虚拟成多通道盲源分离,输入快速独立分量分析(fast independent component analysis,FastICA)进行负荷信号分离,求取分解负荷波形模态分量的能量与能量熵。构建多维特征矩阵输入建立粒子群算法优化支持向量机(particle swarm optimization for optimizing support vector machines,PSO-SVM),进行负荷的分类辨识。采用开源数据集(reduced electricity dataset,REDD)对实验算法进行仿真,与其他算法相比,验证算法在分解和识别上都具有较好的效果。 展开更多
关键词 非侵入式负荷监测 单通道盲源分解 变分模态分解 能量熵 粒子群算法优化支持向量机
在线阅读 下载PDF
基于改进V-I轨迹的非侵入式负荷辨识方法
12
作者 李剑文 梅飞 +2 位作者 张晓光 封通通 李欣 《电力工程技术》 北大核心 2025年第5期128-137,共10页
针对目前非侵入式负荷辨识方法对负荷特征信息挖掘不足和辨识模型规模庞大的问题,文中提出一种基于改进V-I轨迹的非侵入式负荷辨识方法。首先利用格拉姆角场(Gramian angular field,GAF)和颜色编码技术,将有功电流、瞬时功率、V-If轨迹... 针对目前非侵入式负荷辨识方法对负荷特征信息挖掘不足和辨识模型规模庞大的问题,文中提出一种基于改进V-I轨迹的非侵入式负荷辨识方法。首先利用格拉姆角场(Gramian angular field,GAF)和颜色编码技术,将有功电流、瞬时功率、V-If轨迹进行融合形成新的负荷特征,然后通过深度可分离卷积(depthwise separable convolution,DSC)模块和混合空洞卷积(hybrid dilated convolution,HDC)模块优化卷积神经网络(convolutional neural network,CNN)模型框架,构建轻量化负荷辨识模型,最后利用公开数据集进行实验分析。结果表明,文中所提方法的F1分数为0.953,可实现在减少软硬件资源占用的基础上进一步提升对用电负荷的辨识精度。 展开更多
关键词 非侵入式负荷监测 颜色编码 多特征融合 V-If轨迹 轻量化模型 格拉姆角场(GAF)
在线阅读 下载PDF
基于线性复杂度自注意力机制的非侵入式负荷监测方法
13
作者 廖耀华 常艳平 +3 位作者 王恩 魏龄 潘国兵 王海鹏 《电测与仪表》 北大核心 2025年第8期197-205,共9页
非侵入式负荷监测(non-intrusive load monitoring,NILM)技术对于实现智慧用电与管理具有重要意义。针对现有的非侵入式负荷监测方法在高噪声环境下对特征相似电器以及微小负荷变化监测精度不足的难题,提出了一种基于单位力操作视觉变... 非侵入式负荷监测(non-intrusive load monitoring,NILM)技术对于实现智慧用电与管理具有重要意义。针对现有的非侵入式负荷监测方法在高噪声环境下对特征相似电器以及微小负荷变化监测精度不足的难题,提出了一种基于单位力操作视觉变换器的非侵入式负荷监测(non-intrusive load monitoring based on unit force operated vision transformer,UFONILM)模型的非侵入式负荷监测的深度学习框架。UFONILM模型的单位力操作(unit force operated,UFO)模块通过层归一化和一系列卷积层有效地提取和利用了多尺度的时间序列数据,特征。在标准的UK-DALE数据集上进行的实验显示,UFONILM模型在准确性和F1得分上均优于现有方法,特别是在细粒度的负荷监测场景中。研制了基于UFONILM模型的嵌入式系统,实现了边缘计算的非侵入式负荷监测,可实时监测和响应电网中的异常用电行为,如违规充电事件。实验检测证明,UFONILM模型嵌入式非侵入式负荷监测方法在监测效率方面具有显著的提升,具有高效、便捷安装、可扩展等特点。 展开更多
关键词 智能电网 边缘侧 非侵入式负荷监测 深度学习 UFO模块
在线阅读 下载PDF
基于多算法融合的非侵入式负荷监测模型
14
作者 史茗元 钱本华 +2 位作者 宋自强 王睿 刘尧 《南方电网技术》 北大核心 2025年第4期185-195,206,共12页
尽管非侵入式负荷监测(non-intrusive load monitoring,NILM)已经得到了广泛的研究,然而现有的非侵入式负荷监测模型存在多工作状态电器预测困难的问题,导致预测精度显著降低。为此设计了一种基于多算法融合的非侵入式负荷监测模型。首... 尽管非侵入式负荷监测(non-intrusive load monitoring,NILM)已经得到了广泛的研究,然而现有的非侵入式负荷监测模型存在多工作状态电器预测困难的问题,导致预测精度显著降低。为此设计了一种基于多算法融合的非侵入式负荷监测模型。首先,对REDD低频数据集进行基于时间的插值、过采样等方式预处理数据。其次,模型采用图卷积神经网络(graph convolutional networks,GCN)和卷积神经网络(convolutional neural network,CNN)提取功率特征,将功率特征输入到自注意力机制和长短期记忆网络(long short-term memory,LSTM)中,有效提取了输入信号中的关键特征,提高多工作状态电器的预测精度。最后,利用预处理后REDD低频数据集进行仿真验证,实验结果表明所提出的模型在MAE、SAE和R^(2)指标上均优于对比模型,能够有效实现负荷分解。 展开更多
关键词 非侵入式负荷监测 自注意力机制 图卷积神经网络
在线阅读 下载PDF
基于ICA-R的电动汽车充电负荷分解方法
15
作者 郑文杰 李世明 +3 位作者 王怡 卢建刚 张金江 赵瑞锋 《电测与仪表》 北大核心 2025年第7期85-91,共7页
非侵入式电力负荷监测(non-intrusive load monitoring,NILM)技术是智能电网中实现居民电力负荷用电细节监测的重要手段。电动汽车的发展在给环境带去积极效应的同时,也给电网带来了不利影响,并且存在火灾隐患,电动汽车充电负荷监测有... 非侵入式电力负荷监测(non-intrusive load monitoring,NILM)技术是智能电网中实现居民电力负荷用电细节监测的重要手段。电动汽车的发展在给环境带去积极效应的同时,也给电网带来了不利影响,并且存在火灾隐患,电动汽车充电负荷监测有着重要意义。文章提出了基于带参考信号的独立成分分析(independent component analysis with reference,ICA-R)的电动汽车充电负荷提取方法,并应用信号重构对电动汽车充电负荷的幅值和时间进行估计,使用Pecan Street数据库中的数据进行实验,实验证明文中所提方法具有较高的精确度。 展开更多
关键词 非侵入式电力负荷监测 电动汽车充电负荷 带参考信号的独立成分分析(ICA-R)
在线阅读 下载PDF
基于多V-I轨迹融合的非侵入式负荷识别方法
16
作者 程志友 胡乐乐 +1 位作者 陈思源 杨猛 《电力系统保护与控制》 北大核心 2025年第11期63-71,共9页
在负荷识别领域中,仅使用单一负荷特征难以有效区分相似轨迹的负荷。为解决这一问题,提出了一种基于多V-I(电压-电流)轨迹融合的非侵入式负荷识别方法。该方法首先对高频采样数据进行预处理,从中提取基波电压(V_(1))、基波电流(I_(1))... 在负荷识别领域中,仅使用单一负荷特征难以有效区分相似轨迹的负荷。为解决这一问题,提出了一种基于多V-I(电压-电流)轨迹融合的非侵入式负荷识别方法。该方法首先对高频采样数据进行预处理,从中提取基波电压(V_(1))、基波电流(I_(1))以及最大谐波电流(I_(h max))。随后使用基波电压分别与基波电流和最大谐波电流相结合,构建了V_(1)-I_(1)轨迹和V_(1)-I_(h max)轨迹。最后将这两种轨迹特征输入到二维卷积神经网络(2D convolutional neural network,2D-CNN)中进行负荷分类,通过PLAID和WHITED两个公共数据集进行验证,所提出的负荷识别方法的准确率高达99.66%和99.81%。该实验结果表明,所提方法不仅增加了信息量,还提高了负荷识别的准确率,在实际电力监控和负荷管理中具有应用价值。 展开更多
关键词 非侵入式负荷识别 相似轨迹 V_(1)-I_(1)轨迹 V_(1)-I_(h max)轨迹 卷积神经网络
在线阅读 下载PDF
基于混合模型的非侵入式负荷监测数据的生成
17
作者 肖勇 谈竹奎 +4 位作者 钱斌 张俊玮 罗奕 张帆 黄军力 《深圳大学学报(理工版)》 北大核心 2025年第1期85-93,共9页
非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地... 非侵入式负荷监测(non-intrusive load monitoring,NILM)是一种无需进入每个用电器内部系统,仅在用户总线入口处安装监测设备的技术.在开展NILM技术研究时,往往需要收集大规模的用户负荷数据来证明所提出方法的普适性,此需求不可避免地带来了繁重的数据收集与整理负担.为克服该挑战,设计了一种结合周期信号频率不变变换(frequency invariant transformation for periodic signals,FIT-PS)原理与时间序列生成对抗网络(time series generative adversarial networks,TimeGAN)的混合模型,记为FIT-PSTimeGAN.针对全球家庭与工业瞬态能量数据集(worldwide household and industry transient energy dataset,WHITED)中的空调、微波炉、吸尘器、冰箱和热水壶5种电器,运用FIT-PS对负荷数据集进行切割和拼接,构建TimeGAN不同状态下的训练集和测试集.评估测试集的效果发现,生成的波形数据与真实数据表现出高度一致性.进一步采用FIT-PS对训练得到的生成数据进行截取和拼接,生成满足测试需求的完整的单负荷波形和多负荷波形.对这些生成的波形与相同状态下的真实数据进行对比,结果显示两者吻合度很高.与自回归模型和生成对抗网络(generative adversarial network,GAN)模型相比,FIT-PS-TimeGAN模型在生成数据的性能方面表现更优.研究结果表明,FIT-PS-TimeGAN混合模型能够有效生成符合标准电器运行规律的波形和场景数据. 展开更多
关键词 电力系统及其自动化 人工智能 非侵入式负荷监测 数据生成方法 周期信号频率不变变换 时间序列生成对抗网络
在线阅读 下载PDF
基于堆叠集成学习的非侵入式负荷高精度辨识方法
18
作者 黄宇 何耿生 +4 位作者 刘西卓 刘玺 牟景艳 陈学艳 曾金灿 《计算机应用》 北大核心 2025年第S1期323-328,共6页
非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一N... 非侵入式负荷监测(NILM)通过分析电力总线数据估计单个负荷的功率波形,是电力系统能耗管理的关键技术之一。随着用户对设备能耗管理需求的增加,NILM的准确性成为研究的重点之一,但它容易受到功率类型、功率水平和负荷变化的影响。单一NILM模型面对不同类型的负荷时准确性差异较大,使用单一方法难以在各类负荷上均取得理想效果。因此,提出一种基于堆叠集成学习的非侵入式负荷高精度辨识方法 AMEL(Aggregation Method based on Ensemble Learning)。首先,选择在各种类型的负荷中表现最优的几种方法构建NILM模型库;其次,建立一个基于多层感知机(MLP)的NILM模型偏好框架,以实现对不同负荷的高精度监测。在UK-DALE数据集上的实验结果表明,与典型的NILM方法相比,所提方法的平均绝对误差(MAE)平均降低了35.6%,F1、召回率和马修斯相关系数(MCC)分别平均提升了33.5%、30.6%和32.1%。此外,通过比较现有的堆叠集成方法和各类设备的辨识波形,验证了所提方法的有效性。 展开更多
关键词 非侵入式负荷监测 集成学习 堆叠方法 序列到序列 双向长短期记忆网络 去噪自编码器
在线阅读 下载PDF
融合外部注意力机制的序列到点非侵入式负荷分解 被引量:2
19
作者 李利娟 刘海 +2 位作者 刘红良 张青松 陈永东 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期846-854,共9页
非侵入式负荷分解可以深度挖掘用户电力消耗数据蕴含的信息价值,为电力设备故障监测、需求响应等决策分析提供重要参考.为有效解决非侵入式负荷分解算法训练时间成本与分解精度间的冲突,提出一种融合外部注意力机制的序列到点非侵入式... 非侵入式负荷分解可以深度挖掘用户电力消耗数据蕴含的信息价值,为电力设备故障监测、需求响应等决策分析提供重要参考.为有效解决非侵入式负荷分解算法训练时间成本与分解精度间的冲突,提出一种融合外部注意力机制的序列到点非侵入式负荷分解算法.首先,将总负荷功率消耗序列进行数据清理、标准化等预处理,以固定窗口长度构建训练输入数据,输入数据通过编码层自动提取设备特征;然后,设计外部注意力机制增强重要特征权值;最终,输入到解码层得到负荷分解结果.利用REDD与UK-DALE两种公开数据集进行模型仿真计算,在信号聚合误差、平均绝对误差、标准化分解误差指标、模型分解曲线、特征图和用户耗能等方面进行对比分析,本文模型克服了卷积层注意力分散的缺点,增强了对有效信息的提取与利用能力,在未增加训练时间成本的前提下具有更高的分解精度. 展开更多
关键词 非侵入式负荷分解 外部注意力机制 神经网络 序列到点
在线阅读 下载PDF
基于低秩张量补全的非侵入式负荷监测缺失数据修复方法 被引量:5
20
作者 杨挺 叶芷杉 +1 位作者 徐嘉成 杨振宁 《电网技术》 EI CSCD 北大核心 2024年第1期394-404,共11页
非侵入式负荷监测技术(non-intrusive load monitoring,NILM)作为实现智能电网用户侧细粒度感知的重要手段,有助于实现需求响应、提高“源-网-荷”互动效率和优化用能,助力实现“30·60目标”。高质量的量测信息是数据驱动型NILM的... 非侵入式负荷监测技术(non-intrusive load monitoring,NILM)作为实现智能电网用户侧细粒度感知的重要手段,有助于实现需求响应、提高“源-网-荷”互动效率和优化用能,助力实现“30·60目标”。高质量的量测信息是数据驱动型NILM的基础,但由于数据采集装置故障、通道拥塞以及延时等都会导致数据缺失,尤其是严重的连续性缺失,由此造成非侵入式负荷监测与分解的精度下降,影响用户画像、需求响应等高级应用。因此,针对该问题,提出了一种基于CP分解的正则化低秩张量补全的量测数据缺失修复方法。算法突破传统单维数据处理局限,对NILM多维量测数据构建了三阶观测张量,从而利用数据内部时序关联性和参量维度间电气关联性进行正则化低秩张量补全。并针对每次核范数计算过程中奇异值分解计算量过大问题,采用基于CP因子矩阵分解的核范数计算降低计算量,减少计算时长,并证明了变换的等效性。最后基于NILM公开数据集iAWE进行了实验,实验结果表明所提出的方法可以提高数据修复精度,在高缺失率和连续缺失情况下仍能有较好地补全效果,并且通过非侵入式负荷分解实验证明其可有效提高分解精度,对智能电网提升细粒度感知能力具有良好的实际意义。 展开更多
关键词 数据修复 低秩张量 核范数 非侵入式负荷监测 连续性缺失
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部