An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素...随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素,构建最小化碳排放成本和码头运营成本的作业调度优化模型,并提出一种“双碳”目标下基于改进型非支配排序遗传算法(NSGA-Ⅱ)(E-NSGA-Ⅱ)的港口作业调度优化算法。首先,调整算法的编码策略、种群初始化方法和交叉变异操作;其次,设计不可行解的基因修复算子,并引入自适应交叉与变异概率机制。实验结果表明,与FCFS(First Come First Service)调度算法相比,所提算法在模型求解中的总成本下降了7.9%,碳排放成本下降了19.7%,码头运营成本下降了6.5%。以上研究结果丰富了多目标优化算法和港口作业调度理论,并为港口企业实现绿色调度、降低运营成本和提升经济效益提供了有力支持。展开更多
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic...Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods.展开更多
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
文摘随着全球气候变化问题的日益严峻,我国提出了“双碳”目标(碳达峰和碳中和)。而港口作为物流枢纽和货物集散地,它的碳排放问题尤为突出。针对港口作业调度优化问题,考虑船舶到港时间、货物装卸需求、岸桥作业能力及碳排放成本等关键因素,构建最小化碳排放成本和码头运营成本的作业调度优化模型,并提出一种“双碳”目标下基于改进型非支配排序遗传算法(NSGA-Ⅱ)(E-NSGA-Ⅱ)的港口作业调度优化算法。首先,调整算法的编码策略、种群初始化方法和交叉变异操作;其次,设计不可行解的基因修复算子,并引入自适应交叉与变异概率机制。实验结果表明,与FCFS(First Come First Service)调度算法相比,所提算法在模型求解中的总成本下降了7.9%,碳排放成本下降了19.7%,码头运营成本下降了6.5%。以上研究结果丰富了多目标优化算法和港口作业调度理论,并为港口企业实现绿色调度、降低运营成本和提升经济效益提供了有力支持。
文摘Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods.