To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separatio...To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有...针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。展开更多
文摘To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
文摘针对现有抗噪声调频干扰相位编码波形设计算法存在计算复杂度高、难以满足实时处理需求的问题,本文提出了一种基于频域坐标下降的高效优化算法。首先,将时域联合优化目标函数转换至频域,建立相位编码波形的频域优化模型。该转换不仅有效规避了时域优化过程中大规模矩阵运算带来的高计算代价,还使得优化问题结构更为简洁,便于后续的算法设计。随后,在交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)框架下引入频域坐标下降法(Frequency-domain Coordinate Descent Method,FCDM),形成了ADMMFCDM算法。该算法将复杂的高维优化问题分解为多个可独立并行处理的一维子问题,通过推导波形频域序列元素的闭式解,不仅大幅降低了单次迭代的计算量,还显著提升了全局优化效率。最后,本文引入快速傅里叶变换(Fast Fourier Transform,FFT)技术对ADMM-FCDM进行简化,得到了交替方向乘子法框架下结合快速傅里叶变换的频域坐标下降算法(Frequency-domain Coordinate Descent Method with Fast Fourier Transform under Alternating Direction Method of Multipliers Framework,ADMM-FFT-FCDM)。FFT的引入极大程度地降低了时域与频域之间变换所需的计算时间,进一步提升了算法的运算效率。仿真实验表明,较于现有算法,本文提出的ADMM-FFTFCDM算法在保证雷达抗干扰性能和探测性能的同时,运算速度获得显著提升。