An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integratio...An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.展开更多
In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(...In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
基金Project(50875028) supported by the National Natural Science Foundation of China
文摘An efficient unbiased estimation method is proposed for the direct identification of linear continuous-time system with noisy input and output measurements.Using the Gaussian modulating filters,by numerical integration,an equivalent discrete identification model which is parameterized with continuous-time model parameters is developed,and the parameters can be estimated by the least-squares (LS) algorithm.Even with white noises in input and output measurement data,the LS estimate is biased,and the bias is determined by the variances of noises.According to the asymptotic analysis,the relationship between bias and noise variances is derived.One equation relating to the measurement noise variances is derived through the analysis of the LS errors.Increasing the degree of denominator of the system transfer function by one,an extended model is constructed.By comparing the true value and LS estimates of the parameters between original and extended model,another equation with input and output noise variances is formulated.So,the noise variances are resolved by the set of equations,the LS bias is eliminated and the unbiased estimates of system parameters are obtained.A simulation example by comparing the standard LS with bias eliminating LS algorithm indicates that the proposed algorithm is an efficient method with noisy input and output measurements.
基金supported by the National Science Foundation of China(61561016 61861008+4 种基金 11603041)the Guangxi Natural Science Foundation Project(2018JJA170090)the Innovation Project of Guet Graduate Education(2018YJCX19 2018YJCX31)Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(DH201707)
文摘In order to solve the problem of ambiguous acquisition of BOC signals caused by its property of multiple peaks,an unambiguous acquisition algorithm named reconstruction of sub cross-correlation cancellation technique(RSCCT)for BOC(kn,n)signals is proposed.In this paper,the principle of signal decomposition is combined with the traditional acquisition algorithm structure,and then based on the method of reconstructing the correlation function.The method firstly gets the sub-pseudorandom noise(PRN)code by decomposing the local PRN code,then uses BOC(kn,n)and the sub-PRN code cross-correlation to get the sub cross-correlation function.Finally,the correlation peak with a single peak is obtained by reconstructing the sub cross-correlation function so that the ambiguities of BOC acquisition are removed.The simulation shows that RSCCT can completely eliminate the side peaks of BOC(kn,n)group signals while maintaining the narrow correlation of BOC,and its computational complexity is equivalent to sub carrier phase cancellation(SCPC)and autocorrelation side-peak cancellation technique(ASPeCT),and it reduces the computational complexity relative to BPSK-like.For BOC(n,n),the acquisition sensitivity of RSCCT is 3.25 dB,0.81 dB and 0.25 dB higher than binary phase shift keying(BPSK)-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.91,3.0 and 3.7 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.For BOC(2n,n),the acquisition sensitivity of RSCCT is 5.5 dB,1.25 dB and 2.69 dB higher than BPSK-like,SCPC and ASPeCT at the acquisition probability of 90%,respectively.The peak to average power ratio is 1.02,1.68 and 2.12 times higher than ASPeCT,SCPC and BPSK-like at SNR=–20 dB,respectively.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
文摘目的常频听力正常的噪声暴露人群大脑皮质功能研究尚少。本研究旨在应用功能性近红外光谱技术(functional near-infrared spectroscopy,fNIRS)分析长期噪声暴露的常频听力正常人群静息态大脑网络功能连接变化。方法选取2023年1月至2023年7月于川北医学院附属医院体检中心就诊的常频听力正常受试者54例,按照是否有噪声暴露将受试者分为试验组(有噪声暴露史)27例和对照组(无噪声暴露史)27例。应用fNIRS分析两组静息状态下各脑区之间功能连接强度,比较两组背外侧前额叶皮质(dorsolateral prefrontal cortex,DLPFC)、Broca区、Wernicke区间同源、异源脑网络差异;所有受试者行相关点位P300检查及简易智能精神状态检查量表(mini-mental state examination,MMSE)评分,采用Pearson相关性分析DLPFC功能连接强度与认知的相关性。结果基于氧合血红蛋白(oxyhemoglobin,HbO_(2))情况下,试验组全脑功能连接强度均低于对照组,差异有统计学意义(P<0.05)。同源比较中,试验组左侧((left,L))-Broca区、L-DLPFC区及右侧(right,R)-Wernicke区的功能连接强度均显著低于对照组,差异有统计学意义(P<0.05);两组(R-Broca、R-DLPFC及L-Wernicke)兴趣区(regions of interest,ROI)比较,差异无统计学意义(P>0.05)。异源比较中,试验组L-Wernicke与L-Broca,R-Wernicke与L-Broca,L-Broca与L-DLPFC,L-Broca与R-DLPFC,L-Wernicke与R-Broca,R-Broca与L-DLPFC,R-Broca与R-DLPFC,R-Wernicke与L-Wernicke,R-Wernicke与L-DLPFC区功能连接强度均显著低于对照组,差异有统计学意义(P<0.05);两组(L-Broca与R-Broca,R-Broca与R-Wernicke,R-Broca与R-DLPFC,L-Wernicke与L-DLPFC,L-Wernicke与R-DLPFC,R-Wernicke与R-DLPFC,L-DLPFC与R-DLPFC)ROI比较,差异无统计学意义(P>0.05)。结论长期接触噪声暴露的人群在听力损失之前,大脑听觉语言及认知皮层已经发生改变。