期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于节点评估与最大类间方差的孤立森林异常值检测 被引量:1
1
作者 严爱军 和世潇 汤健 《北京工业大学学报》 CAS CSCD 北大核心 2024年第10期1188-1197,共10页
针对孤立森林(isolation forest, iForest)无法有效检测局部异常值且异常值分数阈值难以精确设定的问题,提出一种基于节点评估(node evaluation, NE)与最大类间方差(Otsu)的iForest异常值检测方法。首先,在样本评估过程中将节点深度与... 针对孤立森林(isolation forest, iForest)无法有效检测局部异常值且异常值分数阈值难以精确设定的问题,提出一种基于节点评估(node evaluation, NE)与最大类间方差(Otsu)的iForest异常值检测方法。首先,在样本评估过程中将节点深度与相对质量同时引入评分机制,使算法对全局和局部异常值敏感;然后,为了准确设定分数阈值,采用Otsu自适应设定异常值分数阈值;最后,在不同数据集上验证所提方法的有效性。实验结果表明,该方法可以有效兼顾全局和局部异常值的检测,提高iForest检测异常值的准确性。 展开更多
关键词 孤立森林(isolation forest iForest) 异常值检测 最大类间方差(Otsu) 节点评估(node evaluation NE) 分数阈值 节点深度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部