期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Wear Mechanisms of Ceramic Inserts in Machining Nickel-Based Superalloy 被引量:1
1
作者 肖茂华 何宁 +1 位作者 李亮 陆爱华 《Journal of Southwest Jiaotong University(English Edition)》 2010年第1期59-64,共6页
The performances of ceramic inserts in cutting nickel-based alloy were investigated. A new cutting test-bed was devised and used to deburr. The burr height on the working surface with notch wear in deburring cutting w... The performances of ceramic inserts in cutting nickel-based alloy were investigated. A new cutting test-bed was devised and used to deburr. The burr height on the working surface with notch wear in deburring cutting was compared with that in normal cutting. The impact force, impact pressure, and impact frequency of the saw-tooth-shaped chip edge on rake face and cutting edge at different speeds were calculated, and the influence of chip edge on notch wear formation was analyzed. A new tool design for reducing notch wear was presented, which is flexible and can deburr effectively. 展开更多
关键词 Tool wear MECHANISM Notch wear Ceramic inserts nickel-based superalloy
在线阅读 下载PDF
Spin and spin-orbit coupling effects in nickel-based superalloys:A first-principles study on Ni_(3)Al doped with Ta/W/Re
2
作者 Liping Liu Jin Cao +1 位作者 Wei Guo Chongyu Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期458-464,共7页
Heavy elements(X=Ta/W/Re)play an important role in the performance of superalloys,which enhance the strength,anti-oxidation,creep resistance,and anti-corrosiveness of alloy materials in a high-temperature environment.... Heavy elements(X=Ta/W/Re)play an important role in the performance of superalloys,which enhance the strength,anti-oxidation,creep resistance,and anti-corrosiveness of alloy materials in a high-temperature environment.In the present research,the heavy element doping effects in FCC-Ni(γ)and Ni_(3)Al(γ')systems are investigated in terms of their thermodynamic and mechanical properties,as well as electronic structures.The lattice constant,bulk modulus,elastic constant,and dopant formation energy in non-spin,spin polarized,and spin-orbit coupling(SOC)calculations are compared.The results show that the SOC effects are important in accurate electronic structure calculations for alloys with heavy elements.We find that including spin for bothγandγ'phases is necessary and sufficient for most cases,but the dopant formation energy is sensitive to different spin effects,for instance,in the absence of SOC,even spin-polarized calculations give 1%to 9%variance in the dopant formation energy in our model.Electronic structures calculations indicate that spin polarization causes a split in the metal d states,and SOC introduces a variance in the spin-up and spin-down states of the d states of heavy metals and reduces the magnetic moment of the system. 展开更多
关键词 nickel-based superalloys Ni_(3)Al SPIN spin-orbit coupling mechanical properties electronic structures
在线阅读 下载PDF
Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
3
作者 Rui Zhu Qin Zhou +4 位作者 Li Shi Li-Bin Sun Xin-Xin Wu Sha-Sha Lv Zheng-Cao Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期55-60,共6页
Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to ... Nickel-based alloys have been considered as candidate structural materials used in generation IV nuclear reactors serving at high temperatures.In the present study,alloy 617 was irradiated with 180-keV helium ions to a fluence of 3.6×10^(17) ions/cm^(2) at room temperature.Throughout the cross-section transmission electron microscopy(TEM)image,numerous over-pressurized helium bubbles in spherical shape are observed with the actual concentration profile a little deeper than the SRIM predicted result.Post-implantation annealing was conducted at 700℃for 2 h to investigate the bubble evolution.The long-range migration of helium bubbles occurred during the annealing process,which makes the bubbles of the peak region transform into a faceted shape as well.Then the coarsening mechanism of helium bubbles at different depths is discussed and related to the migration and coalescence(MC)mechanism.With the diffusion of nickel atoms slowed down by the alloy elements,the migration and coalescence of bubbles are suppressed in alloy 617,leading to a better helium irradiation resistance. 展开更多
关键词 helium bubble coarsening mechanism nickel-based alloy
在线阅读 下载PDF
Methane Decomposition into Carbon Fibers over Coprecipitated Nickel-Based Catalysts
4
作者 YanJu FengyiLi RenzhongWei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第2期101-106,共6页
Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic... Decomposition of methane in the presence of coprecipitated nickel-basedcatalysts to produce carbon fibers was investigated. The reaction was studied in the temperaturerange of 773 K to 1073 K. At 1023 K, the catalytic activities of three catalysts kept high at theinitial period and then decreased with the reaction time. The lifetimes of Ni-Cu-Al and Ni-La-Alcatalysts are longer than that of Ni-Al catalyst. With three catalysts, the yield of carbon fiberswas very low at 773 K. The yield of carbon fibers for Ni-La-Al catalyst was more than those forNi-Al and Ni-Cu-Al catalysts. For Ni-La-Al catalyst, the elevation of temperature from 873 K up to1073 K led gradually to an increase in the yield of carbon fibers. XRD studies on the Ni-La-Alcatalyst indicate that La_2NiO_4 was formed. The formation of La_2NiO_4 is responsible for theincrease in the catalytic lifetime and the yield of carbon fibers synthesized on Ni-La-Al at773-1073 K. Carbon fibers synthesized on Ni-Al catalyst are thin, long carbon nanotubes. There arebamboo-shaped carbon fibers synthesized on Ni-Cu-Al catalyst. Carbon fibers synthesized on Ni-La-Alcatalyst have large hollow core, thin wall and good graphitization. 展开更多
关键词 methane decomposition carbon fibers nickel-based catalyst
在线阅读 下载PDF
Thermal desorption characteristic of helium ion irradiated nickel-base alloy
5
作者 Shasha Lv Rui Zhu +7 位作者 Yumeng Zhao Mingyang Li Guojing Wang Menglin Qiu Bin Liao Qingsong Hua Jianping Cheng Zhengcao Li 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期67-71,共5页
The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV an... The nickel-base alloy is one of the leading candidate materials for generation IV nuclear reactor pressure vessel.To evaluate its stability of helium damage and retention,helium ions with different energy of 80 keV and 180 keV were introduced by ion implantation to a certain dose(peak displacement damage 1-10 dpa).Then thermal desorption spectroscopy(TDS)of helium atoms was performed to discuss the helium desorption characteristic and trapping sites.The desorption peaks shift to a lower temperature with increasing dpa for both 80 keV and 180 keV irradiation,reflecting the reduced diffusion activation energy and faster diffusion within the alloy.The main release peak temperature of 180 keV helium injection is relatively higher than that of 80 keV at the same influence,which is because the irradiation damage of 180 keV,helium formation and entrapment occur deeper.The broadening of the spectra corresponds to different helium trapping sites(He-vacancies,grain boundary)and desorption mechanisms(different Hen Vm size).The helium retention amount of 80 keV is lower than that of 180 keV,and a saturation limit associated with the irradiation of 80 keV has been reached.The relatively low helium retention proves the better resistance to helium bubbles formation and helium brittleness. 展开更多
关键词 nickel-base alloys HELIUM ION irradiation thermal DESORPTION spectroscopy
在线阅读 下载PDF
Structural Characterization of Nickel-Base Alloy C-276 Irradiated with Ar Ions
6
作者 靳硕学 郭立平 +6 位作者 杨铮 周忠坡 付德君 刘传胜 唐睿 刘飞华 乔岩欣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第6期548-552,共5页
The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM),... The irradiation damage in nickel-base alloy C-276 irradiated with 115 keV Ar ions from low to very high doses was investigated. Structural characterization was performed using transmission electron microscopy (TEM), grazing incident X-ray diffraction (GIXRD) and atomic force microscopy (AFM). High density of interstitial type dislocation loops could be observed at a dose level of around 2.75 displacements per atom (dpa). With the irradiation dose increased to 27.5 dpa, the average size of loops increased from 5 nm to 16 nm, while the density of the loops decreased from 1.4 × 1011/cm2 to 4.6 × 1010/cm2. When the irradiation dose reached 82.5 dpa, original grains were transformed into subgrains whose sizes observed from TEM were about 20-60 nm. The fragmentation of grains was confirmed by GIXRD. The mean subgrain size was 40 nm, which was obtained from the full width at half maximum (FWHM) of the X-ray diffraction lines using the Scherrer formula and Williamson formula. AFM micrographs showed that nanometer-sized hillocks formed at the dose of 82.5 dpa, which provided further evidence of grain fragmentation at a high irradiation dose. 展开更多
关键词 irradiation damage nickel-base alloy C-276 alloy super-critical water reactors
在线阅读 下载PDF
Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys 被引量:2
7
作者 Hui Liu Guan-Hong Lei He-Fei Huang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期109-141,共33页
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou... The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors. 展开更多
关键词 Irradiation and corrosion Synergistic effect Austenitic stainless steels nickel-based alloys Reactors
在线阅读 下载PDF
Superconducting state in Ba_((1-x)) Sr_(x)Ni_(2)As_(2) near the quantum critical point
8
作者 余承峰 张宗源 +7 位作者 宋林兴 吴彦玮 袁小秋 侯杰 涂玉兵 侯兴元 李世亮 单磊 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期488-493,共6页
In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the ... In the phase diagram of the nickel-based superconductor Ba_(1-x)Sr_(x)Ni_(2)As_(2),T_(C) has been found to be enhanced sixfold near the quantum critical point(QCP) x=0.71 compared with the parent compound.However,the mechanism is still under debate.Here,we report a detailed investigation of the superconducting properties near the QCP(x≈0.7) by utilizing scanning tunneling microscopy and spectroscopy.The temperature-dependent superconducting gap and magnetic vortex state were obtained and analyzed in the framework of the Bardeen-Cooper-Schrieffer model.The ideal isotropic s-wave superconducting gap excludes the long-speculated nematic fluctuations while preferring strong electron-phonon coupling as the mechanism for T_(C) enhancement near the QCP.The lower than expected gap ratio of Δ/(k_(B) T_(C)) is rooted in the fact that Ba_(1-x)Sr_(x)Ni_(2)As_(2) falls into the dirty limit with a serious pair breaking effect similar to the parent compound. 展开更多
关键词 nickel-based superconductor electron–phonon coupling dirty limit scanning tunneling microscopy/spectroscopy
在线阅读 下载PDF
Autothermal Reforming of Methane over Ni Catalysts Supported on CuO-ZrO_2-CeO_2-Al_2O_3 被引量:9
9
作者 Xiulan Cai Xinfa Dong Weiming Lin 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第2期122-126,共5页
Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen ... Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen over Ni catalysts supported on the mixed oxide ZrxCe30-xAl70Oδ (x-=5, 10, 15). The catalytic performance of Ni/Zr10Ce20Al70Oδ was better than that of other catalysts. XRD results showed that the addition of Zr to Ni/Ce30Al70Oδ prevented the formation of NiAl2O4 and facilitated the dispersion of NiO. Effects of CuO addition to Zr10Ce20Al70Oδ were also investigated. The activity of Ni catalyst supported on CuO-ZrO2-CeO2-Al2O3 was somewhat affected and the Ni/Cu5Zr10Ce20Al65Oδ showed the best catalytic performance with the highest CH4 conversion, yield of H2, selectivity for H2 and H2/CO production ratio in operation temperatures ranging from 650 to 750 ℃. 展开更多
关键词 METHANE autothermal reforming hydrogen nickel-based catalyst CERIA ZIRCONIA PROMOTER
在线阅读 下载PDF
Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts:Impacts of barium addition on coking behaviors and formation of reaction intermediates 被引量:5
10
作者 Zhanming Zhang Yiran Wang +7 位作者 Kai Sun Yuewen Shao Lijun Zhang Shu Zhang Xiao Zhang Qing Liu Zhenhua Chen Xun Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期208-219,共12页
The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were i... The influence of barium addition to a Ni/Al2O3 catalyst on the reaction intermediates formed,the activity,resistance of the catalyst to coking,and properties of the coke formed after acetic acid steam reforming were investigated in this study.The results showed the drastic effects of barium addition on the physicochemical properties and performances of the catalyst.The solid-phase reaction between alumina and BaO formed BaAl2O4,which re-constructed the alumina structure,resulting in a decrease in the specific surface area and an increase in the resistance of metallic Ni to sintering.The addition of barium was also beneficial for enhancing the catalytic activity,resulting from the changed catalytic reaction network.The in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study of the acetic acid steam reforming indicated that barium could effectively suppress the accumulation of the reaction intermediates of carbonyl,formate,and C=C functional groups on the catalyst surface,attributed to its relatively high ability to cause the gasification of these species.In addition,coking was considerably more significant over the Ba-Ni/Al2O3 catalyst.Moreover,the Ba-Ni/Al2O3 catalyst was more stable than the Ni/Al2O3catalyst,owing to the distinct forms of coke formed (carbon nanotube form over the Ba-Ni/Al2O3 catalyst,and the amorphous form over the Ni/Al2O3 catalyst). 展开更多
关键词 BARIUM ADDITION nickel-based CATALYSTS Steam reforming of acetic acid Reaction INTERMEDIATES COKING BEHAVIORS
在线阅读 下载PDF
Tuning combined steam and dry reforming of methane for “metgas”production: A thermodynamic approach and state-of-the-art catalysts 被引量:5
11
作者 Karam Jabbour 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期54-91,I0003,共39页
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano... Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations. 展开更多
关键词 Combined steam and dry reforming of methane Thermodynamic equilibrium analysis "Metgas"production nickel-based catalysts Heterogeneous catalysis Structure-activity relationship
在线阅读 下载PDF
Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor 被引量:4
12
作者 Bozhao Chu Nian Zhang +2 位作者 Xuli Zhai Xin Chen Yi Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期593-600,共8页
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti... Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction. 展开更多
关键词 hydrogen production steam methane reforming (SMR) nickel-based catalysts MgO promoter millisecond reaction micro-channel reactor
在线阅读 下载PDF
Ni nanoparticles confined by yolk-shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO_(2): Switching CO to formate 被引量:4
13
作者 Juan Du Aibing Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期224-229,I0006,共7页
Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand ch... Electrochemical reduction of CO_(2)(CO_(2)ER) to formate has been a promising route to produce value-added chemicals.Developing low-cost and efficient electrocatalysts with high product selectivity is still a grand challenge.Herein,a novel Ni nanoparticles-anchored CNT coated by mesoporous carbon with yolk-shell structure (CNT/Ni@mC) catalysis was designed for CO_(2)ER.Ni nanoparticles were confined in the cavity between CNT and mesoporous carbon shell and the confined space can be controlled by tuning the amount of silica precursor.The mesoporous carbon shell and confined space are beneficial to charge transmission during CO_(2)ER.In contrast to previous studies,the CNT/Ni@mC catalyst presents selectivity toward formate rather than CO.Electrochemical in situ attenuated total reflection Fourier transform infrared spectroscopy measurements indicate the presence of a COO* intermediate that converts to formate under CO_(2)ER conditions.The well-defined structural feature of the confined space of the Ni-based catalyst for selective CO_(2)ER to formate may facilitate in-depth mechanistic understandings on structural factors that affect CO_(2)ER performance. 展开更多
关键词 Carbon dioxide electrochemical reduction nickel-based catalyst FORMATE Yolk-shell CNT
在线阅读 下载PDF
Effect of CeO_2 and CaO Promoters on Ignition Performance for Partial Oxidation of Methane over Ni/MgO-Al_2O_3 Catalyst 被引量:3
14
作者 Yejun Qiu Jixiang Chen Jiyan Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期148-154,共7页
The effect of CeO2 and CaO promoters on the ignition performance over Ni/MgO-Al2O3 catalyst for the partial oxidation of methane (POM) to synthesis gas was investigated. It was found that the POM reaction could not ... The effect of CeO2 and CaO promoters on the ignition performance over Ni/MgO-Al2O3 catalyst for the partial oxidation of methane (POM) to synthesis gas was investigated. It was found that the POM reaction could not be ignited over lwt%Ni/MgO-Al2O3 catalyst without the promoters in the temperature range from 773 K to 1073 K. CeO2 and CaO promoters enhanced the ignition performance and the POM reactivity of lwt%Ni/MgO-Al2O3 catalyst remarkably. Moreover, the improving effect became greater with the increase of the promoter content under the investigated reactiorrconditions. The modification effects of CeO2 and CaO promoters were closely related to the concentration and reducibility of the surface and bulk oxygen species. 展开更多
关键词 partial oxidation of methane synthesis gas nickel-based catalyst IGNITION cerium oxide calcium oxide
在线阅读 下载PDF
Phthalocyanine-derived catalysts decorated by metallic nanoclusters for enhanced CO_(2)electroreduction 被引量:2
15
作者 Jiacheng Chen Jiayu Li +2 位作者 Jing Xu Minghui Zhu Yi-Fan Han 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期444-451,共8页
Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a muc... Electrochemical CO_(2)reduction(CO_(2)RR)over molecular catalysts is a paramount approach for CO_(2)conversion to CO.Herein,we report a novel phthalocyanine-derived catalyst synthesized by a two-step method with a much improved electroconductivity.Furthermore,the catalyst contains both Ni-N4sites and highly dispersed metallic Ni nanoclusters,leading to an increased CO_(2)RR currents by two folds.Isotope labelling study and in situ spectroscopic analysis demonstrate that the existence of metallic Ni nanoclusters is the key factor for the activity enhancement and can shift the CO_(2)RR mechanism from being electron transfer(ET)-limited(forming*COO^(-))to concerted proton-electron transfer(CPET)-limited(forming CO). 展开更多
关键词 Carbon dioxide ELECTROREDUCTION Hybrid catalyst nickel-based catalysts Mechanism
在线阅读 下载PDF
Effect of thermal exposure time on tellurium-induced embrittlement of Ni–16Mo–7Cr–4Fe alloy
16
作者 Xiang-Wei Chu Hong-Wei Cheng +4 位作者 Cai-Tao Fu Bin Leng Yan-Yan Jia Fang Liu Zhi-Jun Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第12期231-236,共6页
The embrittlement of nickel-based structural alloys by fission-produced tellurium(Te) is a major challenge for molten salt reactors(MSR). In this study, the effects of thermal exposure time on tellurium diffusion in a... The embrittlement of nickel-based structural alloys by fission-produced tellurium(Te) is a major challenge for molten salt reactors(MSR). In this study, the effects of thermal exposure time on tellurium diffusion in a candidate MSR structural alloy(Ni–16 Mo–7 Cr–4 Fe) and the consequent mechanical property degradation of the alloy were investigated through surrogate diffusion experiments at 700 °C. The results show that some tellurium reacted with the alloy to form tellurides on the surface,while some tellurium diffused into the alloy along grain boundaries. Ni_3Te_2 and CrTe were the most stable reaction products at the tested temperature, and the formation of CrTe on the surface induced the Cr depletion at grain boundaries of the alloy. The diffusion depth of Te increased gradually with thermal exposure time, and thediffusion rate kept stable within the test duration of up to3000 h. The Te diffusion in the alloy caused the embrittlement of grain boundaries, inducing crack formation and strength degradation in tensile test at room temperature. 展开更多
关键词 TELLURIUM Grain boundary EMBRITTLEMENT INTERGRANULAR CRACKING nickel-based ALLOY MOLTEN salt reactor
在线阅读 下载PDF
Kinetics modeling for the mixed reforming of methane over Ni-CeO_2/MgAl_2O_4 catalyst
17
作者 Hye Jin Jun Myung-June Park +3 位作者 Seung-Chan Baek Jong Wook Bae Kyoung-Su Ha Ki-Won Jun 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第1期9-17,共9页
Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equi... Kinetics model was developed for the mixed (steam and dry) reforming of methane, which is useful for the control of H2/CO ratio. The equilibrium constants of reaction rate were determined using the experimental equilibrium data at different reaction temperatures, while the forward reaction rate constants were estimated using the experimental data under non-equilibrium (high inert fraction and high space velocity) conditions. The comparison between calculated and experimental data clearly showed that the developed model described satisfactorily, and further analysis using the parametric sensitivity determined the wall temperature and CO2 fraction in the feed gas as effective parameters for the manipulation of CH4 conversion and H2/CO ratio of synthesis gas under the equilibrium condition. Meanwhile, the inert fraction, rather than the residence time, was selected as additional parameter under non-equilibrium condition. 展开更多
关键词 mixed reforming nickel-based catalyst kinetics modeling parameter estimation parametric sensitivity
在线阅读 下载PDF
Modification of Ni/SiO_2 Catalysts by Means of a Novel Plasma Technology
18
作者 李育亮 刘改焕 +3 位作者 宋磊 储伟 戴晓雁 印永祥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第5期551-555,共5页
Atmospheric high frequency cold plasma jet was applied to modify Ni/SiO2 catalysts. The catalysts prepared by two different methods with plasma jet were compared with conventional catalysts. BET, XRD, H2-TPD and high-... Atmospheric high frequency cold plasma jet was applied to modify Ni/SiO2 catalysts. The catalysts prepared by two different methods with plasma jet were compared with conventional catalysts. BET, XRD, H2-TPD and high-resolution transmission electron microscopy (HRTEM) were used to characterize these catalysts. The results showed that the catalyst prepared with plasma jet had higher nickel dispersion, larger specific surface area and smaller nickel particle size, about 5 nanometres. Detailed analyses revealed that improved structure and characteristic of the plasma catalyst were benefited from the large amount of hydrogen atoms in the plasma jet, by which the catalyst reduction can be easily achieved in shorter period of time at lower temperature, thus avoiding sintering and conglomeration of the active particles and the support. The activity of catalysts was investigated in the methane reforming with CO2. It is shown that the conversions of CH4 and CO2, the yields of H2 and CO were all significantly increased for the plasma catalysts. 展开更多
关键词 plasma-reduced nickel-based catalyst silica gel support low-temperature activity methane reforming with carbon dioxide
在线阅读 下载PDF
First-principles study of solute diffusion in Ni3Al
19
作者 刘少华 李孜 王崇愚 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期126-132,共7页
Using first-principles calculations in combination with Wagner–Schottky and kinetic Monte Carlo methods, the diffusion behaviors of solutes via various vacancy-mediated diffusion mechanisms in L12 γ-Ni3Al were inves... Using first-principles calculations in combination with Wagner–Schottky and kinetic Monte Carlo methods, the diffusion behaviors of solutes via various vacancy-mediated diffusion mechanisms in L12 γ-Ni3Al were investigated. The formation energies of the point defects and the migration energies for solutes were calculated. Adding alloying elements can decrease the defect-formation energies of NiAl, increase the defect-formation energies of AlNi, and have little effect on the formation energy of VNi. The migration energies of solutes are related with the site preference and the diffusion mechanism. The diffusion coefficients of Ni, Al, and solutes were calculated, and the concentration of antisite defects plays a crucial role in the elemental diffusion. 展开更多
关键词 nickel-based superalloy diffusion Ni3Al first-principles
在线阅读 下载PDF
New Technology for Optimizing Melting Pool and Regulating Grain Formation in Laser Surface Remelting of Single Crystal Superalloys
20
作者 金国 《材料导报》 EI CAS CSCD 北大核心 2019年第4期569-570,共2页
Nickel-base superalloys are materials of choice for manufacturing hot-section components in gas turbines due to their superior mechanical properties at high temperatures [1]. For maintaining and improving the properti... Nickel-base superalloys are materials of choice for manufacturing hot-section components in gas turbines due to their superior mechanical properties at high temperatures [1]. For maintaining and improving the properties, this kind of materials are often cast into single crystal form. Nevertheless, severe service conditions of high temperature and high pressure, often cause tip and platform damages. 展开更多
关键词 nickel-base manufacturing hot-section
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部