The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important e...The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.展开更多
Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the micro...Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the microstructure,stability at1100°C and stress rupture properties at 1070°C and 160 MPa of the single crystal superalloy were investigated.The experiment results show that the primary dendrite arm spacing decreases and the volume fraction ofγ/γ′eutectic of the alloy increases with the increase of Nb content in the as-cast microstructures.The size ofγ′phase particles becomes small and uniform and the cubic shape does not obviously change with the increase of Nb content.The precipitating rate and volume fraction of TCP phases increase significantly with the increase of Nb content in the process of long term aging at 1100°C.The stress rupture lives increase and elongation decreases with increasing Nb content at 1070°C/160 MPa.At last,the relationship between the microstructures stability,stress rupture properties of the alloy and Nb content is discussed based on JMat Pro software and the lastest relevant database for single crystal superalloy.展开更多
基金Project(51074105)supported by the National Natural Science Foundation of ChinaProjects(08DZ1130100,10520706400)supported by the Science and Technology Commission of Shanghai Municipality,ChinaProject(2007CB613606)supported by the National Basic Research Program of China
文摘The single crystal of nickel-base super alloy is widely used for making turbine blades.The microstructure of the alloy,especially the deviation of preferred orientation of single crystal,possesses the most important effects on the mechanical properties of the blades.In this study,the single crystal ingot and blade of DZ417G alloy are prepared by means of the spiral crystal selector as well as the directional solidification method,and the effect of the parameters(i.e.,the shape of samples,the withdrawal rate)and the structure of the spiral crystal selector on the formation of single crystal and the crystal orientation are investigated.This method can prepare not only the single crystal ingot with simple shape but also the single crystal blades with the complex shape,the simple with rod-shape can form the single crystal easily with a relatively fast withdrawal rate,but the blade with complex shape requires much slower withdrawal rate to form single crystal.The length of the crystal selector almost has no effect on the crystal orientation.However,the angle of selector plays an obvious role on the orientation;the selector with a smaller angle can effectively reduce the deviation of preferred orientation;the appropriate angle of selector to obtain optimal orientation is found to be around30°and the deviation of preferred orientation is about30°for this selector.
文摘Three experimental single crystal superalloys with 0%Nb,0.5%Nb,1.0%Nb were cast in the directionally solidified furnace,while other alloying element contents were basically kept unchanged.The effect of Nb on the microstructure,stability at1100°C and stress rupture properties at 1070°C and 160 MPa of the single crystal superalloy were investigated.The experiment results show that the primary dendrite arm spacing decreases and the volume fraction ofγ/γ′eutectic of the alloy increases with the increase of Nb content in the as-cast microstructures.The size ofγ′phase particles becomes small and uniform and the cubic shape does not obviously change with the increase of Nb content.The precipitating rate and volume fraction of TCP phases increase significantly with the increase of Nb content in the process of long term aging at 1100°C.The stress rupture lives increase and elongation decreases with increasing Nb content at 1070°C/160 MPa.At last,the relationship between the microstructures stability,stress rupture properties of the alloy and Nb content is discussed based on JMat Pro software and the lastest relevant database for single crystal superalloy.