期刊文献+
共找到3,423篇文章
< 1 2 172 >
每页显示 20 50 100
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
1
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL BASIS function neural network genetic algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
Soft measurement model of ring's dimensions for vertical hot ring rolling process using neural networks optimized by genetic algorithm 被引量:2
2
作者 汪小凯 华林 +3 位作者 汪晓旋 梅雪松 朱乾浩 戴玉同 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期17-29,共13页
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri... Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process. 展开更多
关键词 vertical hot ring rolling dimension precision soft measurement model artificial neural network genetic algorithm
在线阅读 下载PDF
Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA) 被引量:1
3
作者 FANG Jun-long ZHANG Chang-li WANG Shu-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期179-183,共5页
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul... We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%. 展开更多
关键词 tomato maturation computer vision artificial neural network genetic algorithms
在线阅读 下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:6
4
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagation(BP) neural network.
在线阅读 下载PDF
Using Genetic Algorithms to Improve the Search of the Weight Space in Cascade-Correlation Neural Network 被引量:1
5
作者 E.A.Mayer, K. J. Cios, L. Berke & A. Vary(University of Toledo, Toledo, OH 43606, U. S. A.)(NASA Lewis Research Center, Cleveland, OH) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期9-21,共13页
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ... In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys. 展开更多
关键词 genetic algorithm Cascade correlation Weight space search neural network.
在线阅读 下载PDF
Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm
6
作者 Zhang Liangjie Li Yanda Wang Pu (Dept of Automation Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期10-17,共8页
DynamicBandwidthAlocationTechniqueinATMNetworksBasedonFuzyNeuralNetworksandGeneticAlgorithm①ZhangLiangjieLiY... DynamicBandwidthAlocationTechniqueinATMNetworksBasedonFuzyNeuralNetworksandGeneticAlgorithm①ZhangLiangjieLiYandaWangPu(Deptof... 展开更多
关键词 模糊神经网 动态带宽分配 异步传输网 基因算法
在线阅读 下载PDF
Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm 被引量:6
7
作者 Morteza Vadood Majid Safar Johari Ali Reza Rahai 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1937-1946,共10页
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po... While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96). 展开更多
关键词 hot mix asphalt fatigue property reinforced fiber artificial neural network genetic algorithm
在线阅读 下载PDF
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
8
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
在线阅读 下载PDF
Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network 被引量:1
9
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期327-330,共4页
Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune... Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption. 展开更多
关键词 IMMUNE genetic algorithm neural network power CONSUMPTION INCREASING RATE FORECAST
在线阅读 下载PDF
Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network 被引量:1
10
作者 CHAIYu-hua PANWei NINGHai-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2005年第1期74-78,共5页
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data ... In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding. 展开更多
关键词 near infrared multilayer feed forward neural network genetic algorithms SOYBEAN fat acid
在线阅读 下载PDF
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
11
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:7
12
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
基于深度神经网络的遗传算法对抗攻击 被引量:1
13
作者 范海菊 马锦程 李名 《河南师范大学学报(自然科学版)》 北大核心 2025年第2期82-90,I0007,共10页
深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个... 深度神经网络(deep neural network,DNN)能够取得良好的分类识别效果,但在训练图像中添加微小扰动进行对抗攻击,其识别准确率会大大下降.在提出的方法中,通过遗传算法得到最优扰动后,修改图像极少的像素生成对抗样本,实现对VGG16等3个基于卷积神经网络图像分类器的成功攻击.实验结果表明在对3个分类模型进行单像素攻击时,67.92%的CIFAR-10数据集中的自然图像可以被扰动到至少一个目标类,平均置信度为79.57%,攻击效果会随着修改像素的增加进一步提升.此外,相比于LSA和FGSM方法,攻击效果有着显著提升. 展开更多
关键词 卷积神经网络 遗传算法 对抗攻击 图像分类 信息安全
在线阅读 下载PDF
基于SSA-GA-BP神经网络的城轨地下线振动源强预测模型 被引量:1
14
作者 刘庆杰 刘博亮 +3 位作者 冯青松 徐璐 罗信伟 刘文武 《铁道科学与工程学报》 北大核心 2025年第5期2355-2366,共12页
为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素... 为寻求一种预测速度快、准确率高的城市轨道交通地下线振动源强预测模型,基于55个非减振轨道测试断面数据,经过数据清洗、分析和标签化后,建立了涵盖典型车型和主要线路参数取值范围的8 000多条实测数据库。分析地铁环境振动的影响因素,利用斯皮尔曼相关系数得到各类影响因素与振动源强的关系强度。分别建立基于卷积神经网络(CNN)、随机森林(RF)、支持向量机(SVM)等5个机器学习模型,对比分析了不同模型对振动源强的预测效果。使用麻雀搜索算法(SSA)和遗传算法(GA)优化BP神经网络模型的结构、超参数、权重及阈值,对比SSA-GA-BP、SSA-BP、GA-BP神经网络对振动源强的预测精度。最终使用4个差异明显且未经模型学习的新断面验证SSA-GA-BP模型的泛化能力。结果表明:5种机器学习模型中BP神经网络的非线性回归拟合能力最强,验证集MAE损失为1.55 dB,决定系数为0.948;SSA-GA-BP模型对振动源强的预测精度高于SSA-BP和GA-BP,验证集MAE、MAPE和决定系数分别为1.289 dB、1.856%和0.967,有80.11%数据的平均绝对误差在2 dB以内;SSA-GA-BP模型对4个经典的新断面数据预测效果良好,4个断面汇总数据的MAE、MSE和MAPE误差值分别为1.21 dB、2.18 dB和1.67%,决定系数为0.977,有70%数据的预测误差在2 dB以内,证明了SSA-GA-BP模型有较强的泛化能力。SSA-GA-BP振源预测模型具有较好的预测精度和快速预测能力,研究可为轨道交通地下线路设计阶段的减振降噪设计提供参考。 展开更多
关键词 城市轨道交通地下线 振动源强 预测 BP神经网络 麻雀搜索算法 遗传算法
在线阅读 下载PDF
陕西省月用水量预测方法研究 被引量:1
15
作者 陈星 沈紫菡 +2 位作者 许钦 刘睿佳 蔡晶 《水利水电科技进展》 北大核心 2025年第1期73-78,共6页
基于国家水资源管理信息系统的月用水量数据分析,选用ARIMA模型、BP神经网络模型以及经过遗传算法(GA)优化的BP神经网络模型(GA-BP神经网络模型)进行月用水量模拟。在构建BP神经网络模型过程中,通过多源社会经济数据的整合与分析,采用... 基于国家水资源管理信息系统的月用水量数据分析,选用ARIMA模型、BP神经网络模型以及经过遗传算法(GA)优化的BP神经网络模型(GA-BP神经网络模型)进行月用水量模拟。在构建BP神经网络模型过程中,通过多源社会经济数据的整合与分析,采用平均影响值算法(MIV)和皮尔逊相关系数联合方法筛选月用水量的关键影响因子。研究结果表明,三种模型在陕西省月用水量预测中均表现出较高的精度,其中GA-BP神经网络模型的预测精度最高。为进一步验证影响因子对模拟结果的影响,采用不同方法筛选影响因子作为GA-BP神经网络模型的输入,模拟结果表明,MIV和皮尔逊相关系数联合方法提高了影响因子的选取精度,能够有效提升GA-BP神经网络模型的模拟性能。 展开更多
关键词 月用水量预测 ARIMA模型 遗传算法 神经网络模型 因子筛选 陕西省
在线阅读 下载PDF
基于遗传算法优化的拖拉机发动机剩余寿命预测模型 被引量:1
16
作者 李有文 《农机化研究》 北大核心 2025年第6期264-268,共5页
拖拉机发动机剩余寿命预测对于提高工作效率、降低维修成本、延长机器寿命和保障安全运行具有重要意义。通过预测发动机剩余寿命,可以更好地进行资源规划和分配。为此,提出了一种基于遗传算法优化的拖拉机发动机剩余寿命预测模型,结合... 拖拉机发动机剩余寿命预测对于提高工作效率、降低维修成本、延长机器寿命和保障安全运行具有重要意义。通过预测发动机剩余寿命,可以更好地进行资源规划和分配。为此,提出了一种基于遗传算法优化的拖拉机发动机剩余寿命预测模型,结合遗传算法和剩余寿命预测方法,通过优化遗传算法的参数,提高了预测模型的准确性和稳定性。同时,通过收集大量的拖拉机发动机运行数据,提取与剩余寿命相关的特征,基于遗传算法寻找最佳的特征子集建立了预测模型。最后,通过试验验证了模型在拖拉机发动机剩余寿命预测方面的有效性。结果表明:与传统的预测模型相比,基于遗传算法优化的模型具有更高的预测准确性和稳定性,RMSE为6.023,MAE仅为4.531。研究结果可以有效地应用于拖拉机发动机剩余寿命预测和维护决策中。 展开更多
关键词 拖拉机发动机 寿命预测 遗传算法 神经网络 相关性
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
17
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
缓存辅助的移动边缘计算任务卸载与资源分配 被引量:1
18
作者 李致远 陈品润 《计算机工程与设计》 北大核心 2025年第5期1248-1255,共8页
针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,... 针对边缘计算网络环境下的计算任务卸载与资源分配问题,提出一种基于分层强化学习的联合优化缓存、卸载与资源分配(HRLJCORA)算法。以时延和能耗为优化目标,将原优化问题分解为两个子问题,下层利用深度Q-learning网络算法进行缓存决策,上层使用软动作评价算法进行计算任务卸载与资源分配决策。仿真实验结果表明,HRLJCORA算法与现有基线算法相比,有效降低了总开销,相较于联合优化计算任务卸载与资源分配(JORA)算法,卸载决策奖励值提高了13.11%,为用户提供了更优质的服务。 展开更多
关键词 移动边缘计算 缓存辅助 卸载决策 资源分配 分层强化学习 深度Q-learning网络算法 软动作评价算法
在线阅读 下载PDF
基于大数据的玉米淀粉制果糖生产过程建模优化
19
作者 郭丽娟 徐晨阳 +7 位作者 张忠义 孟嘉琦 杨铭杨 董亚超 刘琳琳 庄钰 都健 张磊 《现代化工》 北大核心 2025年第7期249-253,259,共6页
传统玉米深加工工厂进行玉米淀粉制糖的工艺复杂,产生大量结构复杂的工业数据,且生产过程中受多种因素影响,导致产品质量波动大。为解决此问题,提出一种考虑数据不确定性构建代理模型并进行优化操作参数的方法。首先,利用实际工业生产... 传统玉米深加工工厂进行玉米淀粉制糖的工艺复杂,产生大量结构复杂的工业数据,且生产过程中受多种因素影响,导致产品质量波动大。为解决此问题,提出一种考虑数据不确定性构建代理模型并进行优化操作参数的方法。首先,利用实际工业生产的数据作为数据源,采用人工神经网络作为代理模型拟合输入输出数据,通过高斯考虑方差和置信区间分析数据的不确定性,最后以果糖含量最高为目标,分别采用遗传算法和粒子群优化算法对操作参数优化,结果对比表明,遗传算法优化得到的果糖含量较粒子群优化算法提高1.45%。提出的优化模型可用于辅助工业生产,从而提高产品质量。 展开更多
关键词 玉米淀粉 果糖 数据驱动 人工神经网络 遗传算法
在线阅读 下载PDF
基于GA-BP神经网络的烟叶打叶风分工艺参数优化
20
作者 田斌强 付龙 +5 位作者 唐剑宁 刘辉 夏凡 黄沙 刘莉艳 郭筠 《河南农业大学学报》 北大核心 2025年第3期508-515,共8页
【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构... 【目的】获得烤烟烟叶在打叶风分中的最佳工艺参数,进一步优化叶片结构。【方法】选取打叶复烤工艺中的前5级打叶转速和第7、第8风机频率共7个因素,每个因素设3个水平开展正交试验,以正交试验结果确定较优的工艺参数组合为数据样本集构建GA-BP神经网络模型,并结合NSGA-Ⅱ的方法对工艺参数进一步优化。【结果】正交试验确定较高的大中片率最佳工艺参数为:第1至5级打叶转速分别为493、471、620、798、794 r·min^(-1),第7、第8级风机频率分别为49、45 Hz,较低的碎片率和叶中含梗率的最优工艺参数为:第1至5级打叶转速分别为503、489、621、792、792 r·min^(-1),第7、第8级风机频率分别为50、46 Hz。经GA-BP神经网络模型优化后为第1至5级打叶转速分别为485、474、620、796、794 r·min^(-1),第7、第8级风机频率分别为49、46 Hz,在此条件下,大中片率提升了1.52个百分点,叶中含梗率、碎片率分别降低了0.09和0.08个百分点。【结论】在正交试验的基础上,通过GA-BP神经网络模型优化多工艺参数,叶片结构更为合理,可为提升烟叶叶片加工质量提供参考。 展开更多
关键词 叶片结构 BP神经网络 遗传算法 打叶风分 参数优化
在线阅读 下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部