In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr...Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.展开更多
二进制漏洞检测在程序安全领域有着重要的作用,为应对大规模的漏洞检测任务,越来越多的神经网络技术被应用到跨架构漏洞检测中,这些技术显著提高了漏洞检测的准确率,但是现有方法仍然面临提取到的信息单一、不能进行跨架构漏洞检测等问...二进制漏洞检测在程序安全领域有着重要的作用,为应对大规模的漏洞检测任务,越来越多的神经网络技术被应用到跨架构漏洞检测中,这些技术显著提高了漏洞检测的准确率,但是现有方法仍然面临提取到的信息单一、不能进行跨架构漏洞检测等问题。提出了一种融合语义与属性特征的跨架构漏洞检测方法。使用二进制函数的汇编代码和属性控制流图作为输入,提取基本块中所有汇编代码的语义信息,将基本块级的语义信息与属性特征信息进行特征融合,生成139维的基本块级向量表示,以此来更全面地表示函数的语义和属性信息。使用基于卷积神经网络的孪生网络模型生成函数级的嵌入向量,以此来提取不同基本块中不同空间层次结构的特征并减少神经网络的参数量,通过计算函数级嵌入向量的距离来判断待检测的两个二进制函数是否相似。在进行跨架构漏洞检测时,只需要输入二进制文件中的函数和已知漏洞函数的汇编代码和属性控制流图即可完成漏洞检测。实验结果表明,该方法检测的准确率为95.64%,AUC(area under curve)值为0.9969,与现有方法相比,准确率可以提升0.26~7.04个百分点,AUC可以提升0.11~1.59个百分点,在真实环境的漏洞检测中表现优异。展开更多
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
基金This work was supported by the National Natural Science Foundation of China(grant number:61671470)the National Key Research and Development Program of China(grant number:2016YFC0802904)the Postdoctoral Science Foundation Funded Project of China(grant number:2017M623423).
文摘Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.
文摘二进制漏洞检测在程序安全领域有着重要的作用,为应对大规模的漏洞检测任务,越来越多的神经网络技术被应用到跨架构漏洞检测中,这些技术显著提高了漏洞检测的准确率,但是现有方法仍然面临提取到的信息单一、不能进行跨架构漏洞检测等问题。提出了一种融合语义与属性特征的跨架构漏洞检测方法。使用二进制函数的汇编代码和属性控制流图作为输入,提取基本块中所有汇编代码的语义信息,将基本块级的语义信息与属性特征信息进行特征融合,生成139维的基本块级向量表示,以此来更全面地表示函数的语义和属性信息。使用基于卷积神经网络的孪生网络模型生成函数级的嵌入向量,以此来提取不同基本块中不同空间层次结构的特征并减少神经网络的参数量,通过计算函数级嵌入向量的距离来判断待检测的两个二进制函数是否相似。在进行跨架构漏洞检测时,只需要输入二进制文件中的函数和已知漏洞函数的汇编代码和属性控制流图即可完成漏洞检测。实验结果表明,该方法检测的准确率为95.64%,AUC(area under curve)值为0.9969,与现有方法相比,准确率可以提升0.26~7.04个百分点,AUC可以提升0.11~1.59个百分点,在真实环境的漏洞检测中表现优异。