The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has rec...The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios.展开更多
现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号...现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。展开更多
基金partially funded by the National Natural Science Foundation of China (Grant No. 61272447)National Entrepreneurship & Innovation Demonstration Base of China (Grant No. C700011)Key Research & Development Project of Sichuan Province of China (Grant No. 2018G20100)
文摘The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios.
文摘现有的脑-机接口系统大都只基于单模式的脑电特征,系统能实现的功能非常有限,从而制约了脑-机接口系统的应用。采用基于多种模式脑电信号(electroencephalogram,EEG)的脑-机接口技术来实现虚拟键鼠系统,使得被试可以利用自身的脑电信号控制鼠标和键盘的操作。研究了脑-机接口中常用的3种脑电信号,分别是P300波、alpha波以及稳态视觉诱发电位(steady state visual evoked potential,SSVEP),通过设计实验成功的诱发出了被试相应的特征脑电信号。利用SSVEP的脑电特征设计6频率LED闪烁刺激的虚拟鼠标系统,实现控制鼠标光标移动、单击左键和单击右键的任务;利用P300波的脑电特征设计6×6的字符矩阵虚拟键盘系统,实现字符输入的任务;利用被试自主闭眼增强alpha波的脑电特征,实现鼠标和键盘应用切换的任务。研究了适宜这3种脑电特征的最佳测量电极组合及模式识别算法,使得对3种脑电信号的识别正确率均达到了85%以上。测试结果显示,文中设计的基于多模式EEG的脑-机接口虚拟键鼠系统能有效地实现鼠标控制以及键盘输入的任务。