A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito...A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.展开更多
针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化...针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。展开更多
针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对...针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对比常规PID控制器、模糊PID控制器与模糊神经网络PID控制器在给定期望航向角下的航向控制性能,仿真结果表明模糊神经网络PID控制器对无人艇的航向控制性能最佳;在搭建的实验平台上对不同航向控制器下无人艇的航行轨迹和航向角进行比较,实验结果进一步验证了模糊神经网络PID航向控制算法的优越性。展开更多
基金funded by National Natural Science Foundation of China(Grant No. 51805146)the Fundamental Research Funds for the Central Universities (Grant No. B200202221)+1 种基金Jiangsu Key R&D Program (Grant Nos. BE2018004-1, BE2018004)College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 2020102941513)。
文摘A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.
文摘针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。
文摘针对常规比例、积分和微分(proportional integral derivative,PID)控制器在无人艇航向控制系统中表现出的稳定性差、控制精度低等问题,文章提出一种将模糊控制与反向传播(back propagation,BP)神经网络相结合的控制算法;在MATLAB中对比常规PID控制器、模糊PID控制器与模糊神经网络PID控制器在给定期望航向角下的航向控制性能,仿真结果表明模糊神经网络PID控制器对无人艇的航向控制性能最佳;在搭建的实验平台上对不同航向控制器下无人艇的航行轨迹和航向角进行比较,实验结果进一步验证了模糊神经网络PID航向控制算法的优越性。