期刊文献+
共找到3,500篇文章
< 1 2 175 >
每页显示 20 50 100
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
1
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
在线阅读 下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
2
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
Path-Following Based on Nonlinear Model Predictive Control with Adaptive Path Preview
3
作者 Jun-Ting LI Chih-Keng CHEN 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第S01期158-164,共7页
This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,... This paper presents a Nonlinear Model Predictive Controller(NMPC)for the path following of autonomous vehicles and an algorithm to adaptively adjust the preview distance.The prediction model includes vehicle dynamics,path following dynamics,and system input dynamics.The single-track vehicle model considers the vehicle’s coupled lateral and longitudinal dynamics,as well as nonlinear tire forces.The tracking error dynamics are derived based on the curvilinear coordinates.The cost function is designed to minimize path tracking errors and control effort while considering constraints such as actuator bounds and tire grip limits.An algorithm that utilizes the optimal preview distance vector to query the corresponding reference curvature and reference speed.The length of the preview path is adaptively adjusted based on the vehicle speed,heading error,and path curvature.We validate the controller performance in a simulation environment with the autonomous racing scenario.The simulation results show that the vehicle accurately follows the highly dynamic path with small tracking errors.The maximum preview distance can be prior estimated and guidance the selection of the prediction horizon for NMPC. 展开更多
关键词 path following curvilinear coordinates nonlinear model predictive control
在线阅读 下载PDF
Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems 被引量:5
4
作者 Chen Weisheng Li Junmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期611-618,共8页
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r... For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example. 展开更多
关键词 nonlinear time-delay system neural network adaptive bounding technique memoryless adaptive NN controller.
在线阅读 下载PDF
Neural network based adaptive sliding mode control of uncertain nonlinear systems 被引量:4
5
作者 Ghania Debbache Noureddine Goléa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期119-128,共10页
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat... The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results. 展开更多
关键词 nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness.
在线阅读 下载PDF
DTHMM based delay modeling and prediction for networked control systems 被引量:2
6
作者 Shuang Cong Yuan Ge +2 位作者 Qigong Chen Ming Jiang Weiwei Shang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1014-1024,共11页
In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time in... In the forward channel of a networked control system (NCS), by defining the network states as a hidden Markov chain and quantizing the network-induced delays to a discrete sequence distributing over a finite time interval, the relation between the network states and the network-induced delays is modelled as a discrete-time hidden Markov model (DTHMM). The expectation maximization (EM) algorithm is introduced to derive the maximumlikelihood estimation (MLE) of the parameters of the DTHMM. Based on the derived DTHMM, the Viterbi algorithm is introduced to predict the controller-to-actuator (C-A) delay during the current sampling period. The simulation experiments demonstrate the effectiveness of the modelling and predicting methods proposed. 展开更多
关键词 networked control system discrete-time hidden Markov model network state delay prediction.
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
7
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 Fuzzy logic neural networks Adaptive control nonlinear dynamic system.
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
8
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control Recurrent neural networks Intelligent PID control.
在线阅读 下载PDF
Batch Process Modelling and Optimal Control Based on Neural Network Model 被引量:6
9
作者 JieZhang 《自动化学报》 EI CSCD 北大核心 2005年第1期19-31,共13页
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,... This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process. 展开更多
关键词 批量处理 神经网络模型 聚合 重复学习控制 最佳控制
在线阅读 下载PDF
Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network
10
作者 WANG Zhi-liang,FU Qiang,LIANG Chuan (Hydroelectric College,Sichuan University) 《Journal of Northeast Agricultural University(English Edition)》 CAS 2001年第1期37-42,共6页
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal... On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible. 展开更多
关键词 SOIL prediction model of Soil Nutrients Loss Based on Artificial neural network
在线阅读 下载PDF
Constrained predictive control based on T-S fuzzy model for nonlinear systems 被引量:7
11
作者 Su Baili Chen Zengqiang Yuan Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期95-100,共6页
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th... A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems. 展开更多
关键词 Generalized predictive control (GPC) nonlinear system T-S fuzzy model Input constraint Fuzzy cluster
在线阅读 下载PDF
Fault detection for nonlinear networked control systems based on fuzzy observer 被引量:6
12
作者 Zhangqing Zhu Xiaocheng Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期129-136,共8页
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont... Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective. 展开更多
关键词 nonlinear networked control system (NNCS) fault detection T-S fuzzy model state observer time-delay.
在线阅读 下载PDF
Support vector machine based nonlinear model multi-step-ahead optimizing predictive control 被引量:9
13
作者 钟伟民 皮道映 孙优贤 《Journal of Central South University of Technology》 EI 2005年第5期591-595,共5页
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established... A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection. 展开更多
关键词 nonlinear model predictive control support vector machine nonlinear system identification kernel function nonlinear optimization
在线阅读 下载PDF
Robust model predictive control with randomly occurred networked packet loss in industrial cyber physical systems 被引量:9
14
作者 CAI Hong-bin LI Ping +1 位作者 SU Cheng-li CAO Jiang-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1921-1933,共13页
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech... For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method. 展开更多
关键词 robust model predictive control networked control system packet loss linear matrix inequalities (LMIs)
在线阅读 下载PDF
Adaptive control of system with hysteresis using neural networks 被引量:4
15
作者 Li Chuntao Tan Yonghong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期163-167,共5页
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the thr... An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme. 展开更多
关键词 neural networks HYSTERESIS adaptive control preisach model.
在线阅读 下载PDF
Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators 被引量:2
16
作者 李元春 丁贵彬 赵博 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2917-2925,共9页
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper... A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme. 展开更多
关键词 constrained reconfigurable manipulators position/force control model decomposition decentralized control neural network
在线阅读 下载PDF
A Dual-mode Nonlinear Model Predictive Control with the Enlarged Terminal Constraint Sets 被引量:16
17
作者 ZOU Tao LI Shao-Yuao DING Bao-Cang 《自动化学报》 EI CSCD 北大核心 2006年第1期21-27,共7页
Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain sch... Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented. 展开更多
关键词 不变量集 非线性模型 预先控制 非线性约束系统 增益表
在线阅读 下载PDF
Model predictive control synthesis algorithm based on polytopic terminal region for Hammerstein-Wiener nonlinear systems 被引量:2
18
作者 李妍 陈雪原 毛志忠 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2028-2034,共7页
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ... An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm. 展开更多
关键词 Hammerstein-Wiener nonlinear systems model predictive control polytopic terminal constraint set parameter-correlation nonlinear control stability linear matrix inequalities (LMIs)
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
19
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
在线阅读 下载PDF
An improved constrained model predictive control approach for Hammerstein-Wiener nonlinear systems 被引量:1
20
作者 李妍 陈雪原 +1 位作者 毛志忠 袁平 《Journal of Central South University》 SCIE EI CAS 2014年第3期926-932,共7页
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa... Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach. 展开更多
关键词 Hammerstein-Wiener nonlinear systems model predictive control parameter-dependent Lyapunov functions stability linear matrix inequalities (LMIs)
在线阅读 下载PDF
上一页 1 2 175 下一页 到第
使用帮助 返回顶部