期刊文献+
共找到2,888篇文章
< 1 2 145 >
每页显示 20 50 100
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
1
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
2
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 fault diagnosis Deep learning Multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
Feature evaluation and extraction based on neural network in analog circuit fault diagnosis 被引量:16
3
作者 Yuan Haiying Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期434-437,共4页
Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature... Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method. 展开更多
关键词 fault diagnosis Feature extraction Analog circuit neural network Principal component analysis.
在线阅读 下载PDF
Wavelet neural network based fault diagnosis in nonlinear analog circuits 被引量:16
4
作者 Yin Shirong Chen Guangju Xie Yongle 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期521-526,共6页
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ... The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility. 展开更多
关键词 fault diagnosis nonlinear analog circuits wavelet analysis neural networks.
在线阅读 下载PDF
Actuator fault diagnosis of autonomous underwater vehicle based on improved Elman neural network 被引量:6
5
作者 孙玉山 李岳明 +2 位作者 张国成 张英浩 吴海波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期808-816,共9页
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr... Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective. 展开更多
关键词 autonomous underwater vehicle fault diagnosis THRUSTER improved Elman neural network
在线阅读 下载PDF
Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks 被引量:4
6
作者 Mousavi Hamidreza Shahbazian Mehdi +1 位作者 Jazayeri-Rad Hooshang Nekounam Aliakbar 《Journal of Central South University》 SCIE EI CAS 2014年第6期2273-2281,共9页
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ... Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly. 展开更多
关键词 fault diagnosis nonlinear principal component analysis auto-associative neural networks
在线阅读 下载PDF
FAULT DIAGNOSIS OF HYDRAULIC PUMPS USING IMPROVED NEURAL NETWORK^+
7
作者 Yang Hongzhi Tan Guanzheng (Department of Automatic Control Engineering, Central South University of Technology, Changsha, 410083, China) Li Zhuangyun (Department of Mechanical Engineering, Huazhong University of Science and Technologyy, Wuhan, 430074, C 《Journal of Central South University》 SCIE EI CAS 1995年第1期64-68,共5页
A new neural network model based on multi-layer perceptron for fault diagnosis of hydraulic pumps is presented, and a framework,ranging from fault signal pick and pre-processing to fault diagnosis, is established. Fi... A new neural network model based on multi-layer perceptron for fault diagnosis of hydraulic pumps is presented, and a framework,ranging from fault signal pick and pre-processing to fault diagnosis, is established. Finally a test was done on an axial pist 展开更多
关键词 neural network fault diagnosis ALGORITHMS
在线阅读 下载PDF
Study on Power Transformers Fault Diagnosis Based on Wavelet Neural Network and D-S Evidence Theory
8
作者 LIANG Liu-ming CHEN Wei-gen +2 位作者 YUE Yan-feng WEI Chao YANG Jian-feng 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2694-2700,共7页
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re... >Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers. 展开更多
关键词 小波神经网络 D-S证据理论 电力变压器 故障诊断 适应基因算法
在线阅读 下载PDF
A Neural-based L1-Norm Optimization Approach for Fault Diagnosis of Nonlinear Resistive Circuits 被引量:2
9
作者 Yigang He School of Electrical & Information Engineering, Hunan Univ,Changsha 410082,P.R.China Yichuang Sun Department of Electronic,Communication & electrical Engineering,Faculty of Engineering and Information Sciences,University of Hertfordshire,Hatfie 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期143-147,共5页
This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and u... This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and utilized in locating the most likely faulty elements in nonlinear circuits.The validity of the proposed method is verified by both extensive computer simulations and practical examples.One simulation example is presented in the paper. 展开更多
关键词 fault diagnosis neural networks Optimization methods NONLINEAR CIRCUITS Anlog CIRCUITS
在线阅读 下载PDF
A Neural-based Algorithm for Diagnosis of Networks
10
作者 Yigang He Ming Zhou (School of Electrical and Information Engineering, Hunan University, 410082,China) 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期139-142,共4页
This paper presents a neural based algorithm to locate analog fault. It uses the characteristic of the category of BP networks to identify k faults of analog networks. This method trains the BP networks to general fau... This paper presents a neural based algorithm to locate analog fault. It uses the characteristic of the category of BP networks to identify k faults of analog networks. This method trains the BP networks to general fault dictionary with extending ability. The proposed method can be used to locate faults on real-time. 展开更多
关键词 neural networkS fault diagnosis CIRCUIT with Tolerancesl
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
11
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 fault diagnosis Graph neural networks Graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Research method of circuit fault diagnosis based on FCM
12
作者 周德新 李伟 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期290-294,共5页
Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog c... Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog circuits and in diagnoses the ARNIC 429 reception circuit of aviation aircraft avionics. The C cluster algorithm can make the amount of the fuzzy rule automatically and can create an initial fuzzy rule database of fault diagnosis. A type of fuzzy neural network and a fault tree were generated. The algorithm avoids the disadvantage that gets into the part of optimum circumstance. A validate application was implemented, which proves that the method is effective. Therefore, the method is superior to the traditional methods in fault diagnosis, and the efficiency is heavily improved. 展开更多
关键词 C CLUSTER algorithm neural network ANALOG CIRCUIT fault diagnosis
在线阅读 下载PDF
Novel Fault Diagnosis Scheme for HVDC System via ESO
13
作者 YAN Bing-yong TIAN Zuo-hua SHI Song-jiao 《高电压技术》 EI CAS CSCD 北大核心 2007年第11期88-93,共6页
A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults... A novel fault detection and identification(FDI)scheme for HVDC(High Voltage Direct Current Transmission)system was presented.It was based on the unique active disturbance rejection concept,where the HVDC system faults were estimated using an extended states observer(ESO).Firstly,the mathematical model of HVDC system was constructed,where the system states and disturbance were treated as an extended state.An augment HVDC system was established by using the extended state in rectify side and converter side,respectively.Then,a fault diagnosis filter was established to diagnose the HVDC system faults via the ESO theory.The evolution of the extended state in the augment HVDC system can reflect the actual system faults and disturbances,which can be used for the fault diagnosis purpose.A novel feature of this approach is that it can simultaneously detect and identify the shape and magnitude of the HVDC faults and disturbance.Finally,different kinds of HVDC faults were simulated to illustrate the feasibility and effectiveness of the proposed ESO based FDI approach.Compared with the neural network based or support vector machine based FDI approach,the ESO based FDI scheme can reduce the fault detection time dramatically and track the actual system fault accurately.What's more important,it needs not do complex online calculations and the training of neural network so that it can be applied into practice. 展开更多
关键词 高压直流输电系统 故障检验与识别 故障诊断 分支状态观测器
在线阅读 下载PDF
基于改进卷积神经网络的风电机组叶片覆冰诊断方法研究 被引量:2
14
作者 邢作霞 张玥 +1 位作者 郭珊珊 张超 《太阳能学报》 北大核心 2025年第3期661-667,共7页
针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特... 针对风电机组叶片覆冰影响机组运行安全和降低发电量的问题,提出一种基于极端梯度提升算法和麻雀搜索算法优化卷积神经网络的风电机组叶片覆冰诊断方法。首先,利用基于极端梯度提升算法计算实际机组监控和数据采集系统(SCADA)数据的特征权重,筛除冗余特征变量,降低诊断模型的复杂度、减少诊断时间;再利用卷积神经网络模型对筛选后SCADA数据进行特征提取建立叶片覆冰诊断分类模型;最后,利用麻雀搜索算法对诊断模型中的超参数寻优,提高诊断模型的准确率。实验结果表明提出的方法对叶片覆冰的诊断准确率达到98%,相比于长短期记忆网络、K近邻算法等分类模型诊断准确率更高。 展开更多
关键词 风电机组 故障诊断 叶片覆冰 神经网络 麻雀搜索算法
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
15
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
16
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 BP神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
基于融合卷积Transformer的航空发动机故障诊断 被引量:1
17
作者 赵洪利 杨佳强 《北京航空航天大学学报》 北大核心 2025年第4期1117-1126,共10页
航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊... 航空发动机长期处于恶劣的气路环境下工作会面临腐蚀、侵蚀等问题,且故障参数特征不明显,因此,精准的航空发动机故障诊断方法对保证飞机安全运行具有重要意义。为提高预测准确性,提出了一种基于融合卷积Transformer的航空发动机故障诊断方法。利用自注意力机制提取有用特征,抑制冗余信息,并将最大池化层引入Transformer模型中,进一步降低模型内存消耗及参数量,缓解过拟合现象。采用基于GasTurb建模的涡扇发动机仿真数据集进行验证,结果与Transformer模型和反向传播(BP)神经网络、卷积神经网络(CNN)、循环神经网络(RNN)等传统深度学习模型相比,准确率分别提高了6.552%和28.117%、13.189%、10.29%,证明了所提方法的有效性,可为航空发动机故障诊断提供一定的参考。 展开更多
关键词 航空发动机 故障诊断 自注意力机制 融合卷积Transformer 深度神经网络
在线阅读 下载PDF
基于不同故障传播路径差异化的故障诊断方法
18
作者 谭帅 王一帆 +2 位作者 姜庆超 侍洪波 宋冰 《自动化学报》 北大核心 2025年第1期161-173,共13页
针对工业过程中故障发生源与故障信息在传播过程中的差异性问题,提出了一种基于不同故障传播路径差异化(Fault propagation path-aware network,FPPAN)的故障诊断方法.该方法分别从故障源邻域信息关系和故障信息传播两个角度出发,设计... 针对工业过程中故障发生源与故障信息在传播过程中的差异性问题,提出了一种基于不同故障传播路径差异化(Fault propagation path-aware network,FPPAN)的故障诊断方法.该方法分别从故障源邻域信息关系和故障信息传播两个角度出发,设计了基于k近邻筛选(k-nearest-neighbor,k-NN)和基于剪枝的k跳可达路径选择(Pruning-based k-hop reachable path selection,k-PHop)的两种故障源图的构建方式,构建“故障源图”.从故障在变量间的差异化表现着手,将基于特征的分类问题转换为基于结构关系的图匹配问题,利用该结构化信息优化过程特征,提升模型故障诊断性能.最后,通过田纳西−伊斯曼(Tennessee-Eastman,TE)过程和某海底盾构掘进施工过程进行仿真验证,实验结果证明了所提方法的有效性. 展开更多
关键词 故障诊断 图神经网络 故障源图 故障根源 故障传播路径
在线阅读 下载PDF
基于1DCNN特征提取和RF分类的滚动轴承故障诊断
19
作者 张豪 刘其洪 +1 位作者 李伟光 李漾 《中国测试》 北大核心 2025年第4期137-143,共7页
针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN... 针对深度学习技术在滚动轴承故障诊断识别中依赖于大量测量数据,相对较少的数据可能会导致过度拟合并降低模型的稳定性等问题,提出一种一维卷积神经网络(1DCNN)和随机森林(RF)相结合的轴承故障诊断模型。将原始时域信号输入搭建的1DCNN网络中,提取原始数据特征向量,对特征向量进行t-SNE降维可视化,验证1DCNN特征提取的有效性。将特征向量输入随机森林实现故障状态识别,解决小样本的滚动轴承故障分类问题。在CWRU数据集和Paderborn数据集上进行实验,针对不同类型、不同损伤程度的轴承,得到分类结果准确率分别达到99.69%和99.16%。与传统的神经网络和机器学习分类模型相比,1DCNN-RF模型具有更高的诊断准确率,可验证所提模型的泛化性和有效性。 展开更多
关键词 滚动轴承 故障诊断 一维卷积神经网络 随机森林
在线阅读 下载PDF
GAF结合卷积神经网络的滚动轴承故障诊断研究
20
作者 张文兴 陈豪 +1 位作者 刘文婧 王建国 《机械设计与制造》 北大核心 2025年第5期12-17,共6页
为了充分发挥深度卷积神经网络识别二维图片在轴承故障诊断过程中的优势,这里提出了一种改进的格拉姆角场,改进后的算法在生成图片后具有更多的特征,经验证其在神经网络训练中收敛速度更快。其次结合改进的CNN模型,改进后的模型引进深... 为了充分发挥深度卷积神经网络识别二维图片在轴承故障诊断过程中的优势,这里提出了一种改进的格拉姆角场,改进后的算法在生成图片后具有更多的特征,经验证其在神经网络训练中收敛速度更快。其次结合改进的CNN模型,改进后的模型引进深度卷积结合注意力机制,保证模型在实现更少模型参数和更快的推理速度同时,在验证集能够取得更高的准确率。试验和研究结果表明,该图片编码方式结合改进的神经网络,在模型收敛上更迅速,并且在验证集上具有更好的准确率和鲁棒性。 展开更多
关键词 格拉姆角场 故障诊断 深度学习 神经网络
在线阅读 下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部