期刊文献+
共找到8,675篇文章
< 1 2 250 >
每页显示 20 50 100
Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm 被引量:6
1
作者 Morteza Vadood Majid Safar Johari Ali Reza Rahai 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1937-1946,共10页
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po... While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96). 展开更多
关键词 hot mix asphalt fatigue property reinforced fiber artificial neural network genetic algorithm
在线阅读 下载PDF
Volterra Feedforward Neural Networks:Theory and Algorithms 被引量:3
2
作者 Jiao Lichengl Liu Fang & Xie Qin(National Lab. for Radar Signal Processing and Center for Neural Networks,Xidian University, Xian 710071, P.R.China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期1-12,共12页
The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms ... The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms are significant potentials in nonlinear approximation ability,convergent speeds and global optimization than the classical neural networks and the standard BP algorithm, and related computer simulations and theoretical analysis are given too. 展开更多
关键词 Volterra neural networks Homotopy learning algorithm.
在线阅读 下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
3
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL BASIS function neural network GENETIC algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
Multiple model tracking algorithms based on neural network and multiple process noise soft switching 被引量:2
4
作者 NieXiaohua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第6期1227-1232,共6页
A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are runn... A multiple model tracking algorithm based on neural network and multiple-process noise soft-switching for maneuvering targets is presented.In this algorithm, the"current"statistical model and neural network are running in parallel.The neural network algorithm is used to modify the adaptive noise filtering algorithm based on the mean value and variance of the"current"statistical model for maneuvering targets, and then the multiple model tracking algorithm of the multiple processing switch is used to improve the precision of tracking maneuvering targets.The modified algorithm is proved to be effective by simulation. 展开更多
关键词 maneuvering target current statistical model neural network multiple model algorithm.
在线阅读 下载PDF
Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA) 被引量:1
5
作者 FANG Jun-long ZHANG Chang-li WANG Shu-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期179-183,共5页
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul... We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%. 展开更多
关键词 tomato maturation computer vision artificial neural network genetic algorithms
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
6
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
在线阅读 下载PDF
Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network 被引量:1
7
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期327-330,共4页
Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune... Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption. 展开更多
关键词 IMMUNE GENETIC algorithm neural network power CONSUMPTION INCREASING RATE FORECAST
在线阅读 下载PDF
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
8
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
在线阅读 下载PDF
Structural reliability analysis using enhanced cuckoo search algorithm and artificial neural network 被引量:6
9
作者 QIN Qiang FENG Yunwen LI Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1317-1326,共10页
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co... The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm. 展开更多
关键词 structural reliability enhanced cuckoo search(ECS) artificial neural network(ANN) cuckoo search(CS) algorithm
在线阅读 下载PDF
Method of neural network modulation recognition based on clustering and Polak-Ribiere algorithm 被引量:4
10
作者 Faquan Yang Zan Li +2 位作者 Hongyan Li Haiyan Huang Zhongxian Pan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期742-747,共6页
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ... To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition. 展开更多
关键词 clustering algorithm feature extraction algorithm of Polak-Ribiere neural network (NN) modulation recognition.
在线阅读 下载PDF
Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm
11
作者 Zhang Liangjie Li Yanda Wang Pu (Dept of Automation Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期10-17,共8页
DynamicBandwidthAlocationTechniqueinATMNetworksBasedonFuzyNeuralNetworksandGeneticAlgorithm①ZhangLiangjieLiY... DynamicBandwidthAlocationTechniqueinATMNetworksBasedonFuzyNeuralNetworksandGeneticAlgorithm①ZhangLiangjieLiYandaWangPu(Deptof... 展开更多
关键词 模糊神经网 动态带宽分配 异步传输网 基因算法
在线阅读 下载PDF
Using Genetic Algorithms to Improve the Search of the Weight Space in Cascade-Correlation Neural Network 被引量:1
12
作者 E.A.Mayer, K. J. Cios, L. Berke & A. Vary(University of Toledo, Toledo, OH 43606, U. S. A.)(NASA Lewis Research Center, Cleveland, OH) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期9-21,共13页
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ... In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys. 展开更多
关键词 Genetic algorithm Cascade correlation Weight space search neural network.
在线阅读 下载PDF
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
13
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
在线阅读 下载PDF
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
14
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 Complex system modeling General stochastic neural network MTS fuzzy model Expectation-maximization algorithm
在线阅读 下载PDF
Near-infrared Spectral Detection of the Content of Soybean Fat Acids Based on Genetic Multilayer Feed forward Neural Network 被引量:1
15
作者 CHAIYu-hua PANWei NINGHai-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2005年第1期74-78,共5页
In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data ... In the paper, a method of building mathematic model employing genetic multilayer feed forward neural network is presented, and the quantitative relationship of chemical measured values and near-infrared spectral data is established. In the paper, quantitative mathematic model related chemical assayed values and near-infrared spectral data is established by means of genetic multilayer feed forward neural network, acquired near-infrared spectral data are taken as input of network with the content of five kinds of fat acids tested from chemical method as output, weight values of multilayer feed forward neural network are trained by genetic algorithms and detection model of neural network of soybean is built. A kind of multilayer feed forward neural network trained by genetic algorithms is designed in the paper. Through experiments, all the related coefficients of five fat acids can approach 0.9 which satisfies the preliminary test of soybean breeding. 展开更多
关键词 near infrared multilayer feed forward neural network genetic algorithms SOYBEAN fat acid
在线阅读 下载PDF
FAULT DIAGNOSIS OF HYDRAULIC PUMPS USING IMPROVED NEURAL NETWORK^+
16
作者 Yang Hongzhi Tan Guanzheng (Department of Automatic Control Engineering, Central South University of Technology, Changsha, 410083, China) Li Zhuangyun (Department of Mechanical Engineering, Huazhong University of Science and Technologyy, Wuhan, 430074, C 《Journal of Central South University》 SCIE EI CAS 1995年第1期64-68,共5页
A new neural network model based on multi-layer perceptron for fault diagnosis of hydraulic pumps is presented, and a framework,ranging from fault signal pick and pre-processing to fault diagnosis, is established. Fi... A new neural network model based on multi-layer perceptron for fault diagnosis of hydraulic pumps is presented, and a framework,ranging from fault signal pick and pre-processing to fault diagnosis, is established. Finally a test was done on an axial pist 展开更多
关键词 neural network FAULT DIAGNOSIS algorithmS
在线阅读 下载PDF
Super-resolution image reconstruction based on three-step-training neural networks
17
作者 Fuzhen Zhu Jinzong Li Bing Zhu Dongdong Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期934-940,共7页
A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite ima... A new method of super-resolution image reconstruction is proposed, which uses a three-step-training error backpropagation neural network (BPNN) to realize the super-resolution reconstruction (SRR) of satellite image. The method is based on BPNN. First, three groups learning samples with different resolutions are obtained according to image observation model, and then vector mappings are respectively used to those three group learning samples to speed up the convergence of BPNN, at last, three times consecutive training are carried on the BPNN. Training samples used in each step are of higher resolution than those used in the previous steps, so the increasing weights store a great amount of information for SRR, and network performance and generalization ability are improved greatly. Simulation and generalization tests are carried on the well-trained three-step-training NN respectively, and the reconstruction results with higher resolution images verify the effectiveness and validity of this method. 展开更多
关键词 image reconstruction SUPER-RESOLUTION three-steptraining neural network BP algorithm vector mapping.
在线阅读 下载PDF
Application of quantum neural networks in localization of acoustic emission 被引量:6
18
作者 Aidong Deng Li Zhao Wei Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期507-512,共6页
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca... Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more. 展开更多
关键词 acoustic emission(AE) LOCALIZATION quantum genetic algorithm(QGA) back propagation(BP) neural network.
在线阅读 下载PDF
Fuzzy neural network image filter based on GA
19
作者 刘涵 刘丁 李琦 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期426-430,共5页
A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the fo... A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following, fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters. 展开更多
关键词 genetic algorithm fuzzy neural network image filter impulse noise.
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:5
20
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部