Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for dela...Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.展开更多
The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that t...The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.展开更多
A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced...A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.展开更多
Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network a...Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.展开更多
The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was contin...The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.展开更多
A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability...A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.展开更多
The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are model...The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach.展开更多
The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS...The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.展开更多
The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a no...The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced ...The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.展开更多
The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied. When data are transmitted over network, the stochastic data packet dropout process ca...The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied. When data are transmitted over network, the stochastic data packet dropout process can be described by a two-state Markov chain. The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes. The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality. The state feedback controller can be constructed via the solution of a set of linear matrix inequalities. An example is given to verify the effectiveness of the method proposed.展开更多
The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control sys...The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.展开更多
This paper presents an online evaluation approach of time delays for networked control systems (NCS), which characterizes the time delays without any synchronized clock in the network and any assumptions of time delay...This paper presents an online evaluation approach of time delays for networked control systems (NCS), which characterizes the time delays without any synchronized clock in the network and any assumptions of time delays. With this approach, an optimal control scheme based on the approach is designed to achieve the desired performance despite the uncertain delays in the system. The experimental results based on CANbus illustrate the effectiveness of the proposed control design and satisfactory performance of the closed-loop system.展开更多
Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper ...Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance.展开更多
A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modele...A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modeled as stochastic systems with the random variables satisfying the Bernoulli random binary distribution. The observer-based controller is designed to stabilize the networked system in the sense of mean square, and the prescribed H∞ disturbance attenuation level is achieved. The controller design problem is formulated as the feasibility of the convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. Numerical examples illustrate the effectiveness of the proposed methods.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient condi...This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient conditions for state/output feedback stabilization and corresponding control laws are derived via a switched system approach. Different from the existing results, the proposed stabilizing controllers design is dependent on the packet loss occurring in the last two transmission intervals due to the network-induced delay. The cone complementary lineara- tion (CCL) methodology is used to solve the non-convex feasibility problem by formulating it into an optimization problem subject to linear matrix inequality (LMI) constraints. Numerical examples and simulations are worked out to demonstrate the effectiveness and validity of the proposed techniques.展开更多
基金the National Natural Science Foundation of China (60574011)the National Natural Science Foundation of Liaoning Province (2050770).
文摘Based on bounded network-induced time-delay, the networked control system is modeled as a linear time-variant singular system. Using the Lyapunov theory and the linear matrix inequality approach, the criteria for delay-independent stability and delay-dependent stability of singular networked control systems are derived and transformed to a feasibility problem of linear matrix inequality formulation, which can be solved by the Matlab LMI toolbox, and the feasible solutions provide the maximum allowable delay bound that makes the system stable. A numerical example is provided, which shows that the analysis method is valid and the stability criteria are feasible.
基金Project (61304046) supported by the National Natural Science Funds for Young Scholar of ChinaProject (F201242) supported by Natural Science Foundation of Heilongjiang Province,China
文摘The H_∞ performance analysis and controller design for linear networked control systems(NCSs) are presented.The NCSs are considered a linear continuous system with time-varying interval input delay by assuming that the sensor is time-driven and the logic Zero-order-holder(ZOH) and controller are event-driven.Based on this model,the delay interval is divided into two equal subintervals for H_∞ performance analysis.An improved H_∞ stabilization condition is obtained in linear matrix inequalities(LMIs) framework by adequately considering the information about the bounds of the input delay to construct novel Lyapunov–Krasovskii functionals(LKFs).For the purpose of reducing the conservatism of the proposed results,the bounds of the LKFs differential cross terms are properly estimated without introducing any slack matrix variables.Moreover,the H_∞ controller is reasonably designed to guarantee the robust asymptotic stability for the linear NCSs with an H_∞ performance level γ.Numerical simulation examples are included to validate the reduced conservatism and effectiveness of our proposed method.
基金Hohai University Startup Outlay for Doctor Scientific Research (2084/40601136)
文摘A kind of networked control system is studied; the networked control system with noise disturbance is modeled based on information scheduling and control co-design. Augmented state matrix analysis method is introduced, and robust fault-tolerant control problem of networked control systems with noise disturbance under actuator failures is studied. The parametric expression of the controller under actuator failures is given. Furthermore, the result is analyzed by simulation tests, which not only satisfies the networked control systems stability, but also decreases the data information number in network channel and makes full use of the network resources.
基金the National Natural Science Foundation of China (60474076)Natural Science Foundationof Jiangxi Province, China (2007GZS0899)Scientific Research Foundation of Jiangxi Provincial Education Department, China(GJJ08238).
文摘Feedback control systems wherein the control loops are closed through a real-time network are called networked control systems (NCS). The defining feature of an NCS is that information is exchanged using a network among control system components. Two new concepts including long time delay and short time delay are proposed. The sensor is almost always clock driven. The controller or the actuator is either clock driven or event driven. Four possible driving modes of networked control systems are presented. The open loop mathematic models of networked control systems with long time delay are developed when the system is driven by anyone of the four different modes. The uniformed modeling method of networked control systems with long time delay is proposed. The simulation results are given in the end.
基金Project(61104106) supported by the National Natural Science Foundation of ChinaProject(201202156) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(LJQ2012100) supported by Program for Liaoning Excellent Talents in University(LNET)
文摘The problem of guaranteed cost control for the networked control systems(NCSs) with time-varying delays, time-varying sampling intervals and signals quantization was investigated, wherein the physical plant was continuous-time one, and the control input was discrete-time one. By using an input delay approach and a sector bound method, the network induced delays, quantization parameter and sampling intervals were presented in one framework in the case of the state and the control input by quantized in a logarithmic form. A novel Lyapunov function with discontinuity, which took full advantages of the NCS characteristic information, was exploited. In addition, it was shown that Lyapunov function decreased at the jump instants. Furthermore, the Leibniz-Newton formula and free-weighting matrix methods were used to obtain the guaranteed cost controller design conditions which were dependent on the NCS characteristic information. A numerical example was used to illustrate the effectiveness of the proposed methods.
基金partially supported by the National Natural Science Foundation of China (60574011).
文摘A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6107402761273083)
文摘The observer-based robust fault detection filter design and optimization for networked control systems (NOSs) with uncer- tain time-varying delays are addressed. The NCSs with uncertain time-varying delays are modeled as parameter-uncertain systems by the matrix theory. Based on the model, an observer-based residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of the linear matrix inequality. Furthermore, a time domain opti- mization approach is proposed to improve the performance of the fault detection system. To prevent the false alarms, a new thresh- old function is established, and the solution of the optimization problem is given by using the singular value decomposition (SVD) of the matrix. A numerical example is provided to illustrate the effectiveness of the proposed approach.
基金supported partly by the Natural Science Foundation China (70571032).
文摘The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.
基金supported by the National Natural Science Foundation of China (60574011)College Research Project of Liaoning Province(L2010522)
文摘The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.
基金supported by the NSFC-Guangdong Joint Foundation Key Project(U0735003)the Overseas Cooperation Foundation(60828006)+1 种基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities(2009ZM0076)the Natural Science Foundation of Guangdong Province(06105413)
文摘The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.
基金the National Science and the Technology Pursuit Project of China (2001BA204B01)
文摘The robust H∞ control for networked control systems with both stochastic network-induced delay and data packet dropout is studied. When data are transmitted over network, the stochastic data packet dropout process can be described by a two-state Markov chain. The networked control systems with stochastic network-induced delay and data packet dropout are modeled as a discrete time Markov jump linear system with two operation modes. The sufficient condition of robust H∞ control for networked control systems stabilized by state feedback controller is presented in terms of linear matrix inequality. The state feedback controller can be constructed via the solution of a set of linear matrix inequalities. An example is given to verify the effectiveness of the method proposed.
基金Project(61025015)supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject (IRT1044)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China+2 种基金Projects(61143004,61203136,61074067,61273185)supported by the National Natural Science Foundation of ChinaProjects(12JJ4062,11JJ2033)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12C0078)supported by Hunan Provincial Department of Education,China
文摘The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.
文摘This paper presents an online evaluation approach of time delays for networked control systems (NCS), which characterizes the time delays without any synchronized clock in the network and any assumptions of time delays. With this approach, an optimal control scheme based on the approach is designed to achieve the desired performance despite the uncertain delays in the system. The experimental results based on CANbus illustrate the effectiveness of the proposed control design and satisfactory performance of the closed-loop system.
基金supported by the National Key Research and Development Plan(2018YFB1201601-12)。
文摘Due to unreliable and bandwidth-limited characteristics of communication link in networked control systems,the realtime compensated methods for single-output systems and multioutput systems are proposed in this paper based on the compressed sensing(CS)theory and sliding window technique,by which the estimates of dropping data packets in the feedback channel are obtained and the performance degradation induced by packet drops is reduced.Specifically,in order to reduce the cumulative error caused by the algorithm,the compensated estimates for single-output systems are corrected via the regularization term;considering the process of single-packet transmission,a new sequential CS framework of sensor data streams is introduced to effectively compensate the dropping packet on single-channel of multi-output systems;in presence of the medium access constraints on multi-channel,the communication sequence for scheduling is coupled to the algorithm and the estimates of the multiple sensors for multi-output systems are obtained via the regularization term.Simulation results illustrate that the proposed methods perform well and receive satisfactory performance.
文摘A new controller design problem of networked control systems with packet dropping is proposed. Depending on the place that the observer is put in the system, the network control systems with packet dropping are modeled as stochastic systems with the random variables satisfying the Bernoulli random binary distribution. The observer-based controller is designed to stabilize the networked system in the sense of mean square, and the prescribed H∞ disturbance attenuation level is achieved. The controller design problem is formulated as the feasibility of the convex optimization problem, which can be solved by a linear matrix inequality (LMI) approach. Numerical examples illustrate the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (6093400761174059)+1 种基金the Program for New Century Excellent Talents (NCET-08-0359)the Shanghai RisingStar Tracking Program (11QH1401300)
文摘This paper is concerned with controller design of net- worked control systems (NCSs) with both network-induced delay and arbitrary packet dropout. By using a packet-loss-dependent Lyapunov function, sufficient conditions for state/output feedback stabilization and corresponding control laws are derived via a switched system approach. Different from the existing results, the proposed stabilizing controllers design is dependent on the packet loss occurring in the last two transmission intervals due to the network-induced delay. The cone complementary lineara- tion (CCL) methodology is used to solve the non-convex feasibility problem by formulating it into an optimization problem subject to linear matrix inequality (LMI) constraints. Numerical examples and simulations are worked out to demonstrate the effectiveness and validity of the proposed techniques.