Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux...Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The int...There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The intrusion detection and cluster-based Ad-Hoc networks has been introduced,then,an architecture for better intrusion detection based on cluster using Data Mining in wireless Ad -Hoc networks has been shown.A statistical anomaly detection approach has been used.The anomaly detection and trace analysis have been done locally in each node and possibly through cooperation with clusterhead detection in the network.展开更多
To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theor...To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international.展开更多
In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-statio...In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-stationary characteristic of network traffic,we extend and develop an adaptive wavecluster algorithm for intrusion detection.Using the multiresolution property of wavelet transforms,we can effectively identify arbitrarily shaped clusters at different scales and degrees of detail,moreover,applying wavelet transform removes the noise from the original feature space and make more accurate cluster found.Experimental results on KDD-99 intrusion detection dataset show the efficiency and accuracy of this algorithm.A detection rate above 96% and a false alarm rate below 3% are achieved.展开更多
The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- s...The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- sures are only to protect the networks, and there is no automated network-wide counteraction against detected intrusions, the architecture of cooperation intrusion response based multi-agent is propose. The architecture is composed of mobile agents. Monitor agent resides on every node and monitors its neighbor nodes. Decision agent collects information from monitor nodes and detects an intrusion by security policies. When an intruder is found in the architecture, the block agents will get to the neighbor nodes of the intruder and form the mobile firewall to isolate the intruder. In the end, we evaluate it by simulation.展开更多
基金supported by the National Grand Fundamental Research "973" Program of China (2004CB318109)the National High-Technology Research and Development Plan of China (2006AA01Z452)the National Information Security "242"Program of China (2005C39).
文摘Anomaly detection has been an active research topic in the field of network intrusion detection for many years. A novel method is presented for anomaly detection based on system calls into the kernels of Unix or Linux systems. The method uses the data mining technique to model the normal behavior of a privileged program and uses a variable-length pattern matching algorithm to perform the comparison of the current behavior and historic normal behavior, which is more suitable for this problem than the fixed-length pattern matching algorithm proposed by Forrest et al. At the detection stage, the particularity of the audit data is taken into account, and two alternative schemes could be used to distinguish between normalities and intrusions. The method gives attention to both computational efficiency and detection accuracy and is especially applicable for on-line detection. The performance of the method is evaluated using the typical testing data set, and the results show that it is significantly better than the anomaly detection method based on hidden Markov models proposed by Yan et al. and the method based on fixed-length patterns proposed by Forrest and Hofmeyr. The novel method has been applied to practical hosted-based intrusion detection systems and achieved high detection performance.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
文摘There are inherent vulnerabilities that are not easily preventable in the mobile Ad-Hoc networks.To build a highly secure wireless Ad-Hoc network,intrusion detection and response techniques need to be deployed;The intrusion detection and cluster-based Ad-Hoc networks has been introduced,then,an architecture for better intrusion detection based on cluster using Data Mining in wireless Ad -Hoc networks has been shown.A statistical anomaly detection approach has been used.The anomaly detection and trace analysis have been done locally in each node and possibly through cooperation with clusterhead detection in the network.
文摘To solve the problem that current intrusion detection model needs large-scale data in formulating the model in real-time use, an intrusion detection system model based on grey theory (GTIDS) is presented. Grey theory has merits of fewer requirements on original data scale, less limitation of the distribution pattern and simpler algorithm in modeling. With these merits GTIDS constructs model according to partial time sequence for rapid detect on intrusive act in secure system. In this detection model rate of false drop and false retrieval are effectively reduced through twice modeling and repeated detect on target data. Furthermore, GTIDS framework and specific process of modeling algorithm are presented. The affectivity of GTIDS is proved through emulated experiments comparing snort and next-generation intrusion detection expert system (NIDES) in SRI international.
文摘In this paper,we introduce an adaptive clustering algorithm for intrusion detection based on wavecluster which was introduced by Gholamhosein in 1999 and used with success in image processing.Because of the non-stationary characteristic of network traffic,we extend and develop an adaptive wavecluster algorithm for intrusion detection.Using the multiresolution property of wavelet transforms,we can effectively identify arbitrarily shaped clusters at different scales and degrees of detail,moreover,applying wavelet transform removes the noise from the original feature space and make more accurate cluster found.Experimental results on KDD-99 intrusion detection dataset show the efficiency and accuracy of this algorithm.A detection rate above 96% and a false alarm rate below 3% are achieved.
基金This project was supported by the National Natural Science Foundation of China (60672068)the National High Technology Development 863 Program of China (2006AA01Z436, 2007AA01Z452.)
文摘The nature of adhoc networks makes them vulnerable to security attacks. Many security technologies such as intrusion prevention and intrusion detection are passive in response to intrusions in that their countermea- sures are only to protect the networks, and there is no automated network-wide counteraction against detected intrusions, the architecture of cooperation intrusion response based multi-agent is propose. The architecture is composed of mobile agents. Monitor agent resides on every node and monitors its neighbor nodes. Decision agent collects information from monitor nodes and detects an intrusion by security policies. When an intruder is found in the architecture, the block agents will get to the neighbor nodes of the intruder and form the mobile firewall to isolate the intruder. In the end, we evaluate it by simulation.