Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtuali...Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtualized software instances. But, existing novel network appliances designed for NFV infrastructure are always architected on a general-purpose x86 server, which makes the performance of network functions limited by the hosted single server. To address this challenge, we propose ApplianceB ricks, a novel NFV-enable network appliance architecture that is used to explore the way of consolidating multiple physical network functions into a clustered network appliance, which is able to improve the processing capability of NFV-enabled network appliances.展开更多
Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/...Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.展开更多
Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The s...Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.展开更多
With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)sat...With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.展开更多
To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middl...To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middleboxes into software-based virtualized function entities.Due to the demands of virtual services placement in NFV network environment, this paper models the service amount placement problem involving with the resources allocation as a cooperative game and proposes the placement policy by Nash Bargaining Solution(NBS). Specifically,we first introduce the system overview and apply the rigorous cooperative game-theoretic guide to build the mathematical model, which can give consideration to both the responding efficiency of service requirements and the allocation fairness.Then a distributed algorithm corresponding to NBS is designed to achieve predictable network performance for virtual instances placement.Finally, with simulations under various scenarios,the results show that our placement approach can achieve high utilization of network through the analysis of evaluation metrics namely the satisfaction degree and fairness index. With the suitable demand amount of services, the average values of two metrics can reach above 90%. And by tuning the base placement, our solution can enable operators to flexibly balance the tradeoff between satisfaction and fairness of resourcessharing in service platforms.展开更多
Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network no...Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network nodes are becoming denser,network topology is becoming more complex,and operators’equipment operation and maintenance costs are increasing.Network functions virtualization multicast issues include building a traffic forwarding topology,deploying the required functions,and directing traffic.Combining the two is still a problem to be studied in depth at present,and this paper proposes a two-stage solution where the decisions of these two stages are interdependent.Specifically,this paper decouples multicast traffic forwarding and function delivery.The minimum spanning tree of traffic forwarding is constructed by Steiner tree,and the traffic forwarding is realized by Viterbi-algorithm.Use a general topology network to examine network cost and service performance.Simulation results show that this method can reduce overhead and delay and optimize user experience.展开更多
As a promising technology to completely transform how we architect, deploy, operate and manage various networks, software-based Network Function Virtualization(NFV) enables hardware-independent, flexible, fast and eff...As a promising technology to completely transform how we architect, deploy, operate and manage various networks, software-based Network Function Virtualization(NFV) enables hardware-independent, flexible, fast and efficient network service provision. With the increasing popularity of NFV paradigm, the Internet has also transformed to be a hybrid environment where NFV-based network entities coexist with traditional network devices. To facilitate our understanding, design, evaluate and manage of such novel network environment, there is a great need for a new NFV-compatible network measurement system which is still in absent so far. To bridge this gap, a system, named Software Defined Network Measurement System(SDNMS), is presented in this paper. Firstly, the architecture of SDNMS is proposed. In this architecture, a formal method to describe the working mode of the network measurement is defined. This method can also be utilized to generate a network measurement middle box(NMMB) in a specific location of the NFV network according to the customized description file, and to flexibly deploy the network measurement function. Secondly, the technology of virtual network measurement function(VNMF) combined with LXC is studied to form NMMB function. Thirdly, a control method is presented to control the start, stop, and update NMMB to form a specific network measurement system function. Finally, a prototype of SDNMS with network monitoring function to monitor network performance anomalies and locate faults is introduced. Experimental results have shown that SDNMS architecture and related technologies are feasible and effective to deploy and control network measurement functions in NFV networks. We hope SDNMS could provide a new method for practitioners to conduct network management and research at the age of NFV.展开更多
Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. Howev...Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.展开更多
Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in respo...Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in response to failures.However,as a compromise,these solutions result in high resource consumption due to device maintenance.In this paper,we propose a novel method named dynamic backup sharing(DBS)that allows SFCs to dynamically share backups to reduce resource consumption.DBS formulates the problem of sharing backups among different VNFs as an integer linear programming(ILP).Thereafter,we design a novel online algorithm based on dynamic programming to solve the problem.The experimental results indicate that DBS outperforms state-ofthe-art works by reducing resource consumption and improving the number of accepted requests.展开更多
基金supported by Program for National Basic Research Program of China (973 Program) "Reconfigurable Network Emulation Testbed for Basic Network Communication"
文摘Network Functions Virtualization(NFV) is an attempt to help operators more effectively manage their networks by implementing traditional network functions embedded in specialized hardware platforms in term of virtualized software instances. But, existing novel network appliances designed for NFV infrastructure are always architected on a general-purpose x86 server, which makes the performance of network functions limited by the hosted single server. To address this challenge, we propose ApplianceB ricks, a novel NFV-enable network appliance architecture that is used to explore the way of consolidating multiple physical network functions into a clustered network appliance, which is able to improve the processing capability of NFV-enabled network appliances.
文摘Network innovation and business transformation are both necessary for telecom operators to adapt to new situations, but operators face challenges in terms of network bearer complexity, business centralization, and IT/CT integration. Network function virtualization (NFV) may inspire new development ideas, but many doubts still exist within industry, especially about how to introduce NFV into an operator' s network. This article describes the latest progress in NFV standardization, NFV requirements and hot technology issues, and typical NFV applications in an operator networks.
文摘Virtualization of network/service functions means time sharing network/service(and affiliated)resources in a hyper speed manner.The concept of time sharing was popularized in the 1970s with mainframe computing.The same concept has recently resurfaced under the guise of cloud computing and virtualized computing.Although cloud computing was originally used in IT for server virtualization,the ICT industry is taking a new look at virtualization.This paradigm shift is shaking up the computing,storage,networking,and ser vice industries.The hope is that virtualizing and automating configuration and service management/orchestration will save both capes and opex for network transformation.A complimentary trend is the separation(over an open interface)of control and transmission.This is commonly referred to as software defined networking(SDN).This paper reviews trends in network/service functions,efforts to standardize these functions,and required management and orchestration.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Open project of Satellite Internet Key Laboratory in 2022(Project 3:Research on Spaceborne Lightweight Core Network and Intelligent Collaboration)the Beijing Natural Science Foundation under grant number L212003.
文摘With the advancements of software defined network(SDN)and network function virtualization(NFV),service function chain(SFC)placement becomes a crucial enabler for flexible resource scheduling in low earth orbit(LEO)satellite networks.While due to the scarcity of bandwidth resources and dynamic topology of LEO satellites,the static SFC placement schemes may cause performance degradation,resource waste and even service failure.In this paper,we consider migration and establish an online migration model,especially considering the dynamic topology.Given the scarcity of bandwidth resources,the model aims to maximize the total number of accepted SFCs while incurring as little bandwidth cost of SFC transmission and migration as possible.Due to its NP-hardness,we propose a heuristic minimized dynamic SFC migration(MDSM)algorithm that only triggers the migration procedure when new SFCs are rejected.Simulation results demonstrate that MDSM achieves a performance close to the upper bound with lower complexity.
基金supported by The National Basic Research Program of China (973) (Grant No. 2012CB315901, 2013CB329104)The National Natural Science Foundation of China (Grant No. 61521003, 61372121, 61309019, 61572519, 61502530)The National High Technology Research and Development Program of China (863) (Grant No. 2015AA016102)
文摘To address the issues that middleboxes as a fundamental part of today's networks are facing, Network Function Virtualization(NFV)has been recently proposed, which in essence asserts to migrate hardware-based middleboxes into software-based virtualized function entities.Due to the demands of virtual services placement in NFV network environment, this paper models the service amount placement problem involving with the resources allocation as a cooperative game and proposes the placement policy by Nash Bargaining Solution(NBS). Specifically,we first introduce the system overview and apply the rigorous cooperative game-theoretic guide to build the mathematical model, which can give consideration to both the responding efficiency of service requirements and the allocation fairness.Then a distributed algorithm corresponding to NBS is designed to achieve predictable network performance for virtual instances placement.Finally, with simulations under various scenarios,the results show that our placement approach can achieve high utilization of network through the analysis of evaluation metrics namely the satisfaction degree and fairness index. With the suitable demand amount of services, the average values of two metrics can reach above 90%. And by tuning the base placement, our solution can enable operators to flexibly balance the tradeoff between satisfaction and fairness of resourcessharing in service platforms.
基金supported by the R&D Program of Beijing Municipal Education Commission(Nos.KM202110858003 and2022X003-KXD)。
文摘Due to the development of network technology,the number of users is increasing rapidly,and the demand for emerging multicast services is becoming more and more abundant,traffic data is increasing day by day,network nodes are becoming denser,network topology is becoming more complex,and operators’equipment operation and maintenance costs are increasing.Network functions virtualization multicast issues include building a traffic forwarding topology,deploying the required functions,and directing traffic.Combining the two is still a problem to be studied in depth at present,and this paper proposes a two-stage solution where the decisions of these two stages are interdependent.Specifically,this paper decouples multicast traffic forwarding and function delivery.The minimum spanning tree of traffic forwarding is constructed by Steiner tree,and the traffic forwarding is realized by Viterbi-algorithm.Use a general topology network to examine network cost and service performance.Simulation results show that this method can reduce overhead and delay and optimize user experience.
基金supported by National Natural Science Foundation of China (No. 61772271, 61379149)
文摘As a promising technology to completely transform how we architect, deploy, operate and manage various networks, software-based Network Function Virtualization(NFV) enables hardware-independent, flexible, fast and efficient network service provision. With the increasing popularity of NFV paradigm, the Internet has also transformed to be a hybrid environment where NFV-based network entities coexist with traditional network devices. To facilitate our understanding, design, evaluate and manage of such novel network environment, there is a great need for a new NFV-compatible network measurement system which is still in absent so far. To bridge this gap, a system, named Software Defined Network Measurement System(SDNMS), is presented in this paper. Firstly, the architecture of SDNMS is proposed. In this architecture, a formal method to describe the working mode of the network measurement is defined. This method can also be utilized to generate a network measurement middle box(NMMB) in a specific location of the NFV network according to the customized description file, and to flexibly deploy the network measurement function. Secondly, the technology of virtual network measurement function(VNMF) combined with LXC is studied to form NMMB function. Thirdly, a control method is presented to control the start, stop, and update NMMB to form a specific network measurement system function. Finally, a prototype of SDNMS with network monitoring function to monitor network performance anomalies and locate faults is introduced. Experimental results have shown that SDNMS architecture and related technologies are feasible and effective to deploy and control network measurement functions in NFV networks. We hope SDNMS could provide a new method for practitioners to conduct network management and research at the age of NFV.
基金supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.61521003)The National Basic Research Program of China(973)(Grant No.2012CB315901,2013CB329104)+1 种基金The National Natural Science Foundation of China(Grant No.61372121,61309019,61309020)The National High Technology Research and Development Program of China(863)(Grant No.2015AA016102,2013AA013505)
文摘Recently, integrating Softwaredefined networking(SDN) and network functions virtualization(NFV) are proposed to address the issue that difficulty and cost of hardwarebased and proprietary middleboxes management. However, it lacks of a framework that orchestrates network functions to service chain in the network cooperatively. In this paper, we propose a function combination framework that can dynamically adapt the network based on the integration NFV and SDN. There are two main contributions in this paper. First, the function combination framework based on the integration of SDN and NFV is proposed to address the function combination issue, including the architecture of Service Deliver Network, the port types representing traffic directions and the explanation of terms. Second, we formulate the issue of load balance of function combination as the model minimizing the standard deviations of all servers' loads and satisfying the demand of performance and limit of resource. The least busy placement algorithm is introduced to approach optimal solution of the problem. Finally, experimental results demonstrate that the proposed method can combine functions in an efficient and scalable way and ensure the load balance of the network.
基金This work is supported by the National Key R&D Program of China(2018YFB1800601)the Key R&D Program of Zhejiang Province(2021C01036,2020C01021)the Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform:ZJUNGICS2021021).
文摘Service function chains(SFC)mapping takes the responsibility for managing virtual network functions(VNFs).In SFC mapping,existing solutions duplicate VNFs with redundant instances to provide high availability in response to failures.However,as a compromise,these solutions result in high resource consumption due to device maintenance.In this paper,we propose a novel method named dynamic backup sharing(DBS)that allows SFCs to dynamically share backups to reduce resource consumption.DBS formulates the problem of sharing backups among different VNFs as an integer linear programming(ILP).Thereafter,we design a novel online algorithm based on dynamic programming to solve the problem.The experimental results indicate that DBS outperforms state-ofthe-art works by reducing resource consumption and improving the number of accepted requests.