期刊文献+
共找到140,214篇文章
< 1 2 250 >
每页显示 20 50 100
Data Gathering Based on Hybrid Energy Efficient Clustering Algorithm and DCRNN Model in Wireless Sensor Network
1
作者 Li Cuiran Liu Shuqi +1 位作者 Xie Jianli Liu Li 《China Communications》 2025年第3期115-131,共17页
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu... In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay. 展开更多
关键词 CLUSTERING data gathering DCRNN model network lifetime wireless sensor network
在线阅读 下载PDF
State-Incomplete Intelligent Dynamic Multipath Routing Algorithm in LEO Satellite Networks
2
作者 Peng Liang Wang Xiaoxiang 《China Communications》 2025年第2期1-11,共11页
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec... The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data. 展开更多
关键词 deep deterministic policy gradient LEO satellite network message passing neuron network multipath routing
在线阅读 下载PDF
Characteristics of complex network of heatwaves over China
3
作者 Xuemin Shen Xiaodong Hu +2 位作者 Aixia Feng Qiguang Wang Changgui Gu 《Chinese Physics B》 2025年第3期567-577,共11页
Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in differen... Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns. 展开更多
关键词 complex network HEATWAVE spatiotemporal evolution characteristics
在线阅读 下载PDF
Exploring the material basis and mechanism of Moringa oleifera in alleviating slow transit constipation based on network pharmacology and animal models
4
作者 Sijin Li Xiaoyu Gao +6 位作者 Kaifeng Guo Shuangfeng Liu Weiqian Yang Yan Zhao Jun Sheng Zhongbin Bai Yang Tian 《Food Science and Human Wellness》 2025年第3期902-913,共12页
Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in reliev... Moringa oleifera have laxative effects,but their active compositions and mechanisms are not very clear thus far.To this end,we systematically explored the active components and mechanism of M.oleifera leaves in relieving constipation by using the slow transit constipation(STC)mouse model and network pharmacology.The results of animal experiments showed that M.oleifera aqueous extract(MOA)had good laxative activity,and its 70%alcohol soluble part(ASP)also showed significant laxative activity(P<0.01).Network pharmacological prediction results suggested that L-phenylalanine(Phe)was the key compound of ASP,and it might relieve constipation through tachykinin receptor 1(TACR1)and three kinds of adrenergic receptors,includingα_(1A)(ADRA1A),α_(2A)(ADRA2A),andα_(2B)(ADRA2B).Further animal experiment results showed that Phe significantly promoted gastrointestinal motility.Phe may relieve STC by enhancing the release of substance P(SP)and upregulating the m RNA expression of TACR1 in the ileum.Importantly,Phe may also promote intestinal movement by downregulating the m RNA expression of ADRA2A and ADRA2B and upregulating the m RNA expression of Calm and the m RNA and protein expression of myosin light chain 9 in the ileum,thereby activating the G protein-coupled receptor-myosin light chain signaling pathway.These results lay a foundation for the application of M.oleifera and Phe in constipation. 展开更多
关键词 Moringa oleifera network pharmacology L-PHENYLALANINE Gastrointestinal motility LAXATIVE
在线阅读 下载PDF
A Study for Inter-Satellite Cooperative Computation Offloading in LEO Satellite Networks
5
作者 Gang Yuanshuo Zhang Yuexia +2 位作者 Wu Peng Zheng Hui Fan Guangteng 《China Communications》 2025年第2期12-25,共14页
Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient int... Low Earth orbit(LEO)satellite networks have the advantages of low transmission delay and low deployment cost,playing an important role in providing reliable services to ground users.This paper studies an efficient inter-satellite cooperative computation offloading(ICCO)algorithm for LEO satellite networks.Specifically,an ICCO system model is constructed,which considers using neighboring satellites in the LEO satellite networks to collaboratively process tasks generated by ground user terminals,effectively improving resource utilization efficiency.Additionally,the optimization objective of minimizing the system task computation offloading delay and energy consumption is established,which is decoupled into two sub-problems.In terms of computational resource allocation,the convexity of the problem is proved through theoretical derivation,and the Lagrange multiplier method is used to obtain the optimal solution of computational resources.To deal with the task offloading decision,a dynamic sticky binary particle swarm optimization algorithm is designed to obtain the offloading decision by iteration.Simulation results show that the ICCO algorithm can effectively reduce the delay and energy consumption. 展开更多
关键词 computation offloading inter-satellite co-operation LEO satellite networks
在线阅读 下载PDF
Model and service for privacy in decentralized online social networks
6
作者 George Pacheco Pinto JoséRonaldo Leles Jr +3 位作者 Cíntia da Costa Souza Paulo Rde Souza Frederico Araújo Durão Cássio Prazeres 《Journal of Electronic Science and Technology》 2025年第1期76-97,共22页
Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and acc... Intensely using online social networks(OSNs)makes users concerned about privacy of data.Given the centralized nature of these platforms,and since each platform has a particular storage mechanism,authentication,and access control,their users do not have the control and the right over their data.Therefore,users cannot easily switch between similar platforms or transfer data from one platform to another.These issues imply,among other things,a threat to privacy since such users depend on the interests of the service provider responsible for administering OSNs.As a strategy for the decentralization of the OSNs and,consequently,as a solution to the privacy problems in these environments,the so-called decentralized online social networks(DOSNs)have emerged.Unlike OSNs,DOSNs are decentralized content management platforms because they do not use centralized service providers.Although DOSNs address some of the privacy issues encountered in OSNs,DOSNs also pose significant challenges to consider,for example,access control to user profile information with high granularity.This work proposes developing an ontological model and a service to support privacy in DOSNs.The model describes the main concepts of privacy access control in DOSNs and their relationships.In addition,the service will consume the model to apply access control according to the policies represented in the model.Our model was evaluated in two phases to verify its compliance with the proposed domain.Finally,we evaluated our service with a performance evaluation,and the results were satisfactory concerning the response time of access control requests. 展开更多
关键词 Access control Decentralized online social network ONTOLOGY PRIVACY
在线阅读 下载PDF
Influence of conformity on the evolution of cooperation in games with sampling rules on networks
7
作者 Xianjia Wang Qiaoyu He 《Chinese Physics B》 2025年第3期215-229,共15页
We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,w... We study the influence of conformity on the evolution of cooperative behavior in games under the learning method of sampling on networks.A strategy update rule based on sampling is introduced into the stag hunt game,where agents draw samples from their neighbors and then update their strategies based on conformity or inference according to the situation in the sample.Based on these assumptions,we present the state transition equations in the dynamic evolution of population cooperation,conduct simulation analysis on lattice networks and scale-free networks,and discuss how this mechanism affects the evolution of cooperation and how cooperation evolves under different levels of conformity in the network.Our simulation results show that blindly imitating the strategies of neighbors does not necessarily lead to rapid consensus in the population.Instead,rational inference through samples can better promote the evolution of the same strategy among all agents in the population.Moreover,the simulation results also show that a smaller sample size cannot reflect the true situation of the neighbors,which has a large randomness,and the size of the benefits obtained in cooperation determines the direction of the entire population towards cooperation or defection.This work incorporates the conforming behavior of agents into the game,uses the method of sampling for strategy updates and enriches the theory of evolutionary games with a more realistic significance. 展开更多
关键词 cooperative evolution stag hunt game CONFORMITY scale-free network
在线阅读 下载PDF
SNSAlib:A python library for analyzing signed network
8
作者 Ai-Wen Li Jun-Lin Lu +1 位作者 Ying Fan Xiao-Ke Xu 《Chinese Physics B》 2025年第3期64-75,共12页
The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to ad... The unique structure of signed networks,characterized by positive and negative edges,poses significant challenges for analyzing network topology.In recent years,various statistical algorithms have been developed to address this issue.However,there remains a lack of a unified framework to uncover the nontrivial properties inherent in signed network structures.To support developers,researchers,and practitioners in this field,we introduce a Python library named SNSAlib(Signed Network Structure Analysis),specifically designed to meet these analytical requirements.This library encompasses empirical signed network datasets,signed null model algorithms,signed statistics algorithms,and evaluation indicators.The primary objective of SNSAlib is to facilitate the systematic analysis of micro-and meso-structure features within signed networks,including node popularity,clustering,assortativity,embeddedness,and community structure by employing more accurate signed null models.Ultimately,it provides a robust paradigm for structure analysis of signed networks that enhances our understanding and application of signed networks. 展开更多
关键词 signed networks null models topology structure statistic analysis
在线阅读 下载PDF
Explosive information spreading in higher-order networks:Effect of social reinforcement
9
作者 Yu Zhou Yingpeng Liu +4 位作者 Liang Yuan Youhao Zhuo Kesheng Xu Jiao Wu Muhua Zheng 《Chinese Physics B》 2025年第3期196-202,共7页
Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered dri... Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society. 展开更多
关键词 explosive information spreading social reinforcement higher-order interactions complex network
在线阅读 下载PDF
GPIC:A GPU-based parallel independent cascade algorithm in complex networks
10
作者 Chang Su Xu Na +1 位作者 Fang Zhou Linyuan Lü 《Chinese Physics B》 2025年第3期20-30,共11页
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ... Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research. 展开更多
关键词 complex networks information spreading independent cascade model parallel computing GPU
在线阅读 下载PDF
Research on the X-ray polarization deconstruction method based on hexagonal convolutional neural network
11
作者 Ya-Nan Li Jia-Huan Zhu +5 位作者 Huai-Zhong Gao Hong Li Ji-Rong Cang Zhi Zeng Hua Feng Ming Zeng 《Nuclear Science and Techniques》 2025年第2期49-61,共13页
Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagon... Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing. 展开更多
关键词 X-ray polarization Track reconstruction Deep learning Hexagonal conventional neural network
在线阅读 下载PDF
Dynamic Collaborative Data Download in Heterogeneous Satellite Networks
12
作者 Wu Qi Li Xintong Zhu Lidong 《China Communications》 2025年第2期26-46,共21页
Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic... Low-earth-orbit(LEO)satellite network has become a critical component of the satelliteterrestrial integrated network(STIN)due to its superior signal quality and minimal communication latency.However,the highly dynamic nature of LEO satellites leads to limited and rapidly varying contact time between them and Earth stations(ESs),making it difficult to timely download massive communication and remote sensing data within the limited time window.To address this challenge in heterogeneous satellite networks with coexisting geostationary-earth-orbit(GEO)and LEO satellites,this paper proposes a dynamic collaborative inter-satellite data download strategy to optimize the long-term weighted energy consumption and data downloads within the constraints of on-board power,backlog stability and time-varying contact.Specifically,the Lyapunov optimization theory is applied to transform the long-term stochastic optimization problem,subject to time-varying contact time and on-board power constraints,into multiple deterministic single time slot problems,based on which online distributed algorithms are developed to enable each satellite to independently obtain the transmit power allocation and data processing decisions in closed-form.Finally,the simulation results demonstrate the superiority of the proposed scheme over benchmarks,e.g.,achieving asymptotic optimality of the weighted energy consumption and data downloads,while maintaining stability of the on-board backlog. 展开更多
关键词 backlog stability data download heterogeneous satellite networks Lyapunov optimization power allocation
在线阅读 下载PDF
Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC
13
作者 Xu Zhao Xuecheng Du +3 位作者 Chao Ma Zhiliang Hu Weitao Yang Bo Zheng 《Chinese Physics B》 2025年第1期477-484,共8页
The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spect... The single event effects(SEEs)evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network(CNN)models(Yolov3,MNIST,and ResNet50)in the atmospheric neutron irradiation spectrometer(ANIS)at the China Spallation Neutron Source(CSNS).The Yolov3 and MNIST models were implemented on the XILINX28-nm system-on-chip(So C).Meanwhile,the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm Fin FET Ultra Scale+MPSoC.The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects,including chip type,network architecture,deployment methods,inference time,datasets,and the position of the anchor boxes.The various types of SEE soft errors,SEE cross-sections,and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC.The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability,long-lifespan domestic artificial intelligence chips. 展开更多
关键词 single event effects atmospheric neutron system on chip convolutional neural network
在线阅读 下载PDF
Pentago SnW:An Improved Spray and Wait Protocol for Delay Tolerant Wireless Sensor Networks
14
作者 Idris Afzal Shah Mushtaq Ahmed Raghavendra Singh 《China Communications》 2025年第3期104-114,共11页
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in o... Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in order to prolong network lifetime;owing to resource-constrained nature of sensors.The fundamental requirement of any network is routing a packet from its source to destination.Performance of a routing algorithm depends on the number of network parameters utilized by that routing protocol.In the recent years,various routing protocol has been developed for the delay tolerant networks(DTN).A routing protocol known as spray and wait(SnW)is one of the most widely used routing algorithms for DTN.In this paper,we study the SnW routing protocol and propose a modified version of it referred to as Pentago SnW which is based on pentagonal number series.Comparison to binary SnW shows promising results through simulation using real-life scenarios of cars and pedestrians randomly moving on a map. 展开更多
关键词 binary SnW delay tolerant network Pentago SnW spray and wait routing
在线阅读 下载PDF
Utilizing BP neural networks to accurately reconstruct the tritium depth profile in materials for BIXS
15
作者 Chen Zhao Wei Jin +2 位作者 Yan Shi Chang-An Chen Yi-Ying Zhao 《Nuclear Science and Techniques》 2025年第1期103-114,共12页
β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirem... β-ray-induced X-ray spectroscopy(BIXS)is a promising method for tritium detection in solid materials because of its unique advantages,such as large detection depth,nondestructive testing capabilities,and low requirements for sample preparation.However,high-accuracy reconstruction of the tritium depth profile remains a significant challenge for this technique.In this study,a novel reconstruction method based on a backpropagation(BP)neural network algorithm that demonstrates high accuracy,broad applicability,and robust noise resistance is proposed.The average reconstruction error calculated using the BP network(8.0%)was much lower than that obtained using traditional numerical methods(26.5%).In addition,the BP method can accurately reconstruct BIX spectra of samples with an unknown range of tritium and exhibits wide applicability to spectra with various tritium distributions.Furthermore,the BP network demonstrates superior accuracy and stability compared to numerical methods when reconstructing the spectra,with a relative uncertainty ranging from 0 to 10%.This study highlights the advantages of BP networks in accurately reconstructing the tritium depth profile from BIXS and promotes their further application in tritium detection. 展开更多
关键词 β-ray-induced X-ray spectroscopy Tritium detection BP network Ridge regression Reconstruction problem
在线阅读 下载PDF
Dynamic partition of urban network considering congestion evolution based on random walk
16
作者 Zhen-Tong Feng Lele Zhang +1 位作者 Yong-Hong Wu Mao-Bin Hu 《Chinese Physics B》 2025年第1期530-534,共5页
The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networ... The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method. 展开更多
关键词 urban road networks dynamic partitioning random walk Akaike information criterion perimeter control
在线阅读 下载PDF
Key Agreement and Management Scheme Based on Blockchain for 5G-Enabled Vehicular Networks
17
作者 Wang Zhihua Wang Shuaibo +4 位作者 Wang Haofan Li Jiaze Yao Yizhe Wang Yongjian Yang Xiaolong 《China Communications》 2025年第3期270-287,共18页
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu... 5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation. 展开更多
关键词 blockchain certificateless public key cryptography 5G vehicular networks key agreement key management
在线阅读 下载PDF
A Basis Function Generation Based Digital Predistortion Concurrent Neural Network Model for RF Power Amplifiers
18
作者 SHAO Jianfeng HONG Xi +2 位作者 WANG Wenjie LIN Zeyu LI Yunhua 《ZTE Communications》 2025年第1期71-77,共7页
This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a f... This paper proposes a concurrent neural network model to mitigate non-linear distortion in power amplifiers using a basis function generation approach.The model is designed using polynomial expansion and comprises a feedforward neural network(FNN)and a convolutional neural network(CNN).The proposed model takes the basic elements that form the bases as input,defined by the generalized memory polynomial(GMP)and dynamic deviation reduction(DDR)models.The FNN generates the basis function and its output represents the basis values,while the CNN generates weights for the corresponding bases.Through the concurrent training of FNN and CNN,the hidden layer coefficients are updated,and the complex multiplication of their outputs yields the trained in-phase/quadrature(I/Q)signals.The proposed model was trained and tested using 300 MHz and 400 MHz broadband data in an orthogonal frequency division multiplexing(OFDM)communication system.The results show that the model achieves an adjacent channel power ratio(ACPR)of less than-48 d B within a 100 MHz integral bandwidth for both the training and test datasets. 展开更多
关键词 basis function generation digital predistortion generalized memory polynomial dynamic deviation reduction neural network
在线阅读 下载PDF
Study on the off situ reconstruction of the core neutron field based on dual-task hybrid network architecture
19
作者 Pei Cao Hui Ding +2 位作者 Cheng-Long Cao Zi-Hui Yang Guo-Min Sun 《Nuclear Science and Techniques》 2025年第1期175-191,共17页
The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to case... The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes. 展开更多
关键词 Real-time reactor monitoring Core neutron field reconstruction Dual-task hybrid network architecture Global-local feature upsampling module
在线阅读 下载PDF
光强—波长模型和RBFN相融合的光谱共焦信号峰值提取方法
20
作者 周鹏 吴运权 +2 位作者 彭秋然 常素萍 卢文龙 《中国测试》 北大核心 2025年第1期69-74,共6页
提出一种光强-波长模型和径向基函数网络(radial basis function network,RBFN)相融合的光谱共焦信号峰值提取算法,简称RBFN-I-λ。首先通过高斯拟合法拟合离散光谱响应信号的差分信号粗略得到初始峰值波长,然后基于泰勒近似法得到理想... 提出一种光强-波长模型和径向基函数网络(radial basis function network,RBFN)相融合的光谱共焦信号峰值提取算法,简称RBFN-I-λ。首先通过高斯拟合法拟合离散光谱响应信号的差分信号粗略得到初始峰值波长,然后基于泰勒近似法得到理想峰值波长并计算初始峰值波长和理想峰值波长之间的波长差,最后利用RBFN-I-λ建立光谱共焦响应信号与波长描述误差之间的映射关系。实验结果表明,RBFN-I-λ算法的精度与传统抛物线法、质心法和高斯拟合法等方法相比,至少提升30%。 展开更多
关键词 光谱共焦 径向基函数网络 泰勒近似 波长描述误差
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部