A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established. As applications, some well-known results on negatively depe...A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established. As applications, some well-known results on negatively dependent random variables can be easily extended to the case of arrays of rowwise extended negatively dependent random variables.展开更多
In the paper, the complete convergence for the maximum of weighted sums of negatively superadditive dependent(NSD, in short) random variables is investigated by using the Rosenthal type inequality. Some sufficient con...In the paper, the complete convergence for the maximum of weighted sums of negatively superadditive dependent(NSD, in short) random variables is investigated by using the Rosenthal type inequality. Some sufficient conditions are presented to prove the complete convergence. The result obtained in the paper generalizes some corresponding ones for independent random variables and negatively associated random variables.展开更多
In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete co...In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete consistency result for the estimator of g(x) is presented.展开更多
Let {X_(nk), k ≥ 1, n ≥ 1} be an array of rowwise negatively superadditive dependent random variables and {a_n, n ≥ 1} be a sequence of positive real numbers such that a_n↑∞. Under some suitable conditions,L_r co...Let {X_(nk), k ≥ 1, n ≥ 1} be an array of rowwise negatively superadditive dependent random variables and {a_n, n ≥ 1} be a sequence of positive real numbers such that a_n↑∞. Under some suitable conditions,L_r convergence of 1/an max 1≤j≤n |j∑k=1 X_(nk)| is studied. The results obtained in this paper generalize and improve some corresponding ones for negatively associated random variables and independent random variables.展开更多
基金Supported by the National Natural Science Foundation of China(11201001) Supported by the Natural Science Foundation of Anhui Province(1208085QA03, 1308085QA03)+1 种基金 Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407) Supported by the Students Science Research Training Program of Anhui University(KYXL2014017)
Acknowledgement The authors are most grateful to the editor and anonymous referees for careful reading of the manuscript and valuable suggestions which helped in significantly improving an earlier version of this paper.
文摘A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established. As applications, some well-known results on negatively dependent random variables can be easily extended to the case of arrays of rowwise extended negatively dependent random variables.
基金Supported by the Natural Science Foundation of Anhui Province(1508085J06)Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407)Supported by the Students Innovative Training Project of Anhui University(201510357118)
文摘In the paper, the complete convergence for the maximum of weighted sums of negatively superadditive dependent(NSD, in short) random variables is investigated by using the Rosenthal type inequality. Some sufficient conditions are presented to prove the complete convergence. The result obtained in the paper generalizes some corresponding ones for independent random variables and negatively associated random variables.
基金Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407)Supported by the Students Innovative Training Project of Anhui University(201310357004,201410357117,201410357249)Supported by the Quality Improvement Projects for Undergraduate Education of Anhui University(ZLTS2015035)
文摘In this paper, by using some inequalities of negatively orthant dependent(NOD,in short) random variables and the truncated method of random variables, we investigate the nonparametric regression model. The complete consistency result for the estimator of g(x) is presented.
基金Supported by the Provincial Natural Science Research Project of Anhui Colleges(KJ2015A018)Supported by the Students Science Research Training Program of Anhui University(kyxl2013003)+2 种基金Supported by the Students Innovative Training Project of Anhui University(201410357118)Supported by the Quality Engineering Project of Anhui Province(2015jyxm045)Supported by the Quality Improvement Project for Undergraduate Education of Anhui University(ZLTS2015035)
文摘Let {X_(nk), k ≥ 1, n ≥ 1} be an array of rowwise negatively superadditive dependent random variables and {a_n, n ≥ 1} be a sequence of positive real numbers such that a_n↑∞. Under some suitable conditions,L_r convergence of 1/an max 1≤j≤n |j∑k=1 X_(nk)| is studied. The results obtained in this paper generalize and improve some corresponding ones for negatively associated random variables and independent random variables.